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Introduction

Glycosylation is one of the most frequentlyoc-
curring post-translational modifications of pro-
teins. The presence of an oligosaccharide moi-
ety in soluble and membrane bound proteins
improves solubility in water, contributes to the
proper orientation of the molecule, protects it
from proteases and, in some cases, is required
for efficient intracellular transport. Some
oligosaccharide sequences may also mediate
highly specific molecular and cellular recogni-
tion. In the first section of this review the bio-
chemistry of protein glycosylation is sum-
marised briefly; the second section deals with
cancer related oligosaccharide changes and
invasive properties of cancer cells, with special
emphasis on experimental systems; the third
section focuses on specific oligosaccharide
structural alterations in human cancers.

Biosynthesis of glycoprotein
oligosaccharides

The biosynthesis of glycoprotein oligosaccha-
rides (for a detailed review see' ?), is catalysed
by glycosyltransferases, a family of 100 or more
enzymes which transfer a sugar residue from a
nucleotide-sugar donor (for example, GDP-
fucose, UDP-galactose and CMP-sialic acid)
to an acceptor which can be a sugar, an amino
acid or a lipid. Glycosyltransferases are classi-
fied on the basis of the sugar they transfer (for
example, fucosyltransferases, galactosyltrans-
ferases, sialyltransferases). Moreover, members
of each glycosyltransferase family are distin-
guished on the basis of the structure they
recognise as an acceptor and of the isomeric
linkage they form (for example, 02,3 and 02,6
sialyltransferases catalyse the linkage of sialic
acid to either the third or the sixth oxydril
group of the penultimate sugar residue). The
biosynthesis of a given glycosidic structure is
controlled mainly at the level of expression of
the cognate glycosyltransferase. Glycoprotein
bound oligosaccharides fall into two well
defined categories: those linked to the amidic
nitrogen of asparagine (N-linked) and those
linked to oxydril side group of serine or threo-
nine (O-linked).

BIOSYNTHESIS OF N-LINKED CHAINS
This process occurs through several discrete
steps (fig 1). In the rough endoplasmic reticu-

lum (RER) an oligosaccharide comprised of
two N-acetylglucosamine (GIcNAc), nine
mannose and three glucose residues is synthe-
sised on a lipid carrier, the dolichol-phosphate,
by the sequential action of the corresponding
glycosyltransferases (fig 1A). This oligosaccha-
ride is then transferred en bloc to an aspar-
agine residue of the nascent polypeptide chain
by the action of a multienzymatic complex,
the oligosaccharyltransferase. Oligosaccharides
containing five or more mannose residues are
referred to as “high-mannose types”. After the
transfer to protein the three glucose residues
and four of the nine mannose residues are
“trimmed” by specific glycosidases. The
“trimmed” oligosaccharides, comprising five
mannose and two GIcNAc residues (fig 1B),
may then act as acceptors for GIcNAc
transferase I, located in the Golgi apparatus
(fig 1C). The addition of the first GIcNAc resi-
due Tepresents the first event of the conversion
of the oligosaccharide from the “high-
mannose” to the “complex type”; two other
mannose residues are subsequently removed
by Golgi mannosidase II and other GIcNAc
and galactose residues are added (fig 1D). The
resulting branched structure may be elongated
by the sequential addition of galactose, fucose
and sialic acid. A typical tetra-branched, fully
sialylated “complex type” glycan is shown in fig
1E. These structures are comprised of an
invariant “core” portion containing three man-
nose and two GIcNAc residues and two to five
antennae.

BIOSYNTHESIS OF O-LINKED CHAINS

N-acetylgalactosamine (GalNAc) is the first
sugar residue to be linked to serine or
threonine. Without further elongation, this
structure forms the Tn antigen (fig 2). Elonga-
tion with galactose linked to the O-3 position
creates the core 1 structure, while the presence
of GIcNAc linked B1,6- or B1,3- to GalNAc
forms core 2 and 3 structures, respectively (fig
2). These three structures are often further
elongated by the addition of other galactose,
GIcNAc and GalNACc residues, and terminated
by fucose or sialic acid, or both. The unsubsti-
tuted core 1 structure represents the Thom-
sen-Friedenreich (or T) epitope. Substitution
of the first GalNAc in the O-6 position with
sialic acid creates the sialyl-Tn antigen, which
does not undergo further elongation. It is gen-
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erally agreed that the first step of
O-glycosylation occurs in cis Golgi, while the
addition of other sugars takes place in more
distal compartments.

Aberrant glycosylation in cancer cells
Generally, the most frequently described can-
cer related changes in the pattern of glycosyla-
tion include the synthesis of highly branched
and heavily sialylated glycans,’ the premature
termination of biosynthesis, resulting in the
expression of uncompleted forms, and the
re-expression of glycosidic antigens of fetal
type.! In many cases the formation of these
aberrant structures depends on altered regula-
tion of one or more key glycosyltransferases;
the molecular basis of this phenomenon
remains obscure in other cases.’ In experimen-
tal systems the relation between altered glyco-
sylation and cancer biology has been studied
using one of two approaches: the first involves
the modification of the glycosylation pattern of
cancer cell membranes by means of glycosyla-
tion inhibitors or glycosidase treatments; the
second is based on the study of subpopulations
of cancer cells selected for a given phenotype—
for instance, increased or reduced metastatic
ability or resistance to a given lectin.

MODIFICATION OF GLYCOSYLATION PATTERN

There are several inhibitors of specific steps of
N-linked biosynthesis. Tunicamycin blocks the
first step of N-glycosylation, giving rise to the
production of proteins devoid of N-linked
chains. Castanospermine inhibits glucosidase
1, the first “trimming” enzyme, causing the for-
mation of glycoproteins bearing high mannose
N-linked chains terminating with glucose (fig
1A). Swainsonine is an inhibitor of Golgi man-
nosidase II, the last “trimming” enzyme and
induces the formation of “hybrid type” gly-
cans, similar to the structure shown in fig 1C,
comprised of five mannose residues and one
complex type antenna, usually formed by
GlcNac, galactose and sialic acid. Treatment of
B16 murine melanoma cells with tunicamycin,
castanospermine or swainsonine results in a
dramatic reduction in the number of pulmo-
nary metastases in syngeneic mice and in
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reduced retention of drug treated cells in the
target organ.”® Consistent results have been
obtained with L-1 mouse sarcoma cells.” In
mouse mammary tumour cells, however, tu-
mour and metastasis formation was inhibited
on treatment with tunicamycin, but not with
swainsonine.'’ Swainsonine inhibits the growth
of human cell lines in vivo at the site of inocu-
lation" ? and metastasis formation,” '* even
when administered to host animals systemi-
cally. Two mechanisms have been proposed to
explain such effects. First, combination treat-
ment with swainsonine and interferon-o2
enhances the activity of the interferon induc-
ible enzyme 2'5'-oligoadenylate synthetase,
suggesting that swainsonine may potentiate the
antiproliferative effect of interferon." ' Sec-
ond, treatment with swainsonine increases
natural killer INK) cell activity of host animals
two to threefold and swainsonine dependent
reduction in metastasis formation is not
observed in NK cell depleted animals."” Swain-
sonine is currently under consideration as an
antineoplastic agent in a phase I clinical
study.'® The sialyltransferase specific inhibitor
KI-8110 has facilitated the investigation of the
role of sialic acid in the regulation of the meta-
static cascade. Because of its negative electric
charge and as it is frequently present at the ter-
minal non-reducing end of glycoprotein oli-
gosaccharides, sialic acid has long been sus-
pected of playing a key role in mediating
biological recognition events, including those
responsible for invasive tumour growth. Treat-
ment of murine'” and human'® colon cancer
cell lines with KI-8110 results in a significant
reduction in sialic acid on the cell surface and
in a dramatic reduction in lung and liver
metastasis formation. Enzymatic removal of
sialic acid increases binding of collagen type IV
and fibronectin by highly metastatic cell lines."
Treatment with KI-8110, however, does not
affect adhesion to these substrates, but de-
creases the ability of tumour cells to induce
platelet aggregation.”® This suggests that sialic
acid may exert its effect on metastasis forma-
tion by controlling the formation of aggregates
of tumour cells and platelets.
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Figure 1 ~ Simplified representation of the N-linked chain biosynthetic pathway. See text for details. Glc = glucose; Man = mannose; Gal = galactose;
GlcNAc = N-acetylglucosamine; SA = sialic acid. Glycans containing five to nine mannose residues (structures A—C), may also be retained by mature
glycoproteins. The number of branches (antennae) in complex glycans usually ranges from 2 to 4. Sialic acid may be linked to galactose either via 0.2,3- or
0.2, 6-linkages. The number of sialic acid residues usually ranges between 0 and 4 (structure E). The core pentasaccharide is boxed in E.
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USE OF SELECTED MUTANTS
Many authors have studied subpopulations of
cells selected for resistance to wheat germ
agglutinin (WGA), a lectin with a broad speci-
ficity for sialic acid, terminal GIcNAc and
poly-N-acetyllactosaminic units (that is, re-
peating GalP1,4GIcNAc units).” In 1977, Tao
and Burger” reported the isolation of WGA
resistant clones of mouse melanoma cells
displaying a dramatic reduction in metastatic
ability. In 1981, Yogeeswaran and Salk®” re-
ported that the ability of murine tumour cells
to metastasise spontaneously from subcutane-
ous sites of injection was positively correlated
with substitution of GalNAc and galactose by
sialic acid (that is, the larger the number of
GalNAc and galactose residues “covered” by
sialic acid, the greater the number of metastatic
cells). Studies on WGA resistant variants and
revertants of the murine melanoma cell line
MDAY-D2 indicate that reduced expression of
surface sialic acid is associated with a poorly
metastatic phenotype and increased binding to
collagen type IV and fibronectin.*** The
mutant WGA resistant cells lack large, sialic
acid bearing N-linked glycans, with poly
N-acetyllactosaminic units (normally present
in parent WGA sensitive cells) and accumulate
truncated glycans.”® ¥ The relation between
WGA resistance and reduced metastatic ability
has been confirmed for different human and
murine cancer cell lines.®?' Moreover, the
ability of T cell hybridoma clones to invade
primary cultures of hepatocytes and to me-
tastasise in syngeneic mice is positively corre-
lated with reduced binding of lectins specific
for penultimate sugar residues, which indicates
a high degree of sialic acid substitution.”> How-
ever, other reports suggest that this relation
may be less direct. Subpopulations of colon
cancer cells expressing a more aggressive
phenotype bear a higher number of cell surface
sialic acid residues but this results in increased
rather than decreased binding to collagen type
IV and fibronectin.” Other investigators failed
to detect any difference in the amount of sialic
acid released by clones of the B16 murine
melanoma cell line with differing metastatic
potentials. Rather, they found a correlation
between metastatic potential and the number
of terminal galactose residues.* ** The involve-
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Figure 2 Commonly occurring biosynthetic pathways of O-linked chain biosynthesis.
Abbreviations as in fig 1; GaINAc = N-acetylgalactosamine; B1,3gal-T =
B1,3-galactosyltransferase (Gal to GalNAc); B1,6GIcNAc-T = B1,6-N-acetylglucosaminyl-
transferase (GIcNAc to GalNAc); B1,3GIcNAc-T = B1,3-N-acetylglucosaminyltransferase
(GIcNAc to GalNAc); 0.2,6SA-T = a.2,6-sialyltransferase (SA to GalNAc).
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ment of terminal galactose residues in the
metastatic cascade is supported, firstly, by the
observation that in vitro binding of a glycosyla-
tion mutant of the lymphoreticular cell line
MDAY-D2, lacking terminal sialic acid and
galactosyl residues, to endothelial cells on
galactosylation is increased by exogenous
galactosyltransferase®; and, secondly, that the
capacity of adrenal carcinoma cells to invade a
reconstituted basement membrane in vitro is
correlated with the level of galactosylation of
cell surface glycoproteins catalysed by a cell
surface galactosyltransferase.”

Although sometimes conflicting, the data
outlined here indicate that the absence of or a
reduction in the number of fully processed,
sialic acid-bearing N-linked glycans reduces
the invasiveness of cancer cells, probably by
altering their adhesion properties or by in-
creasing their susceptibility to the host’s
immune system. However, on the one hand, it
should be remembered that some inhibitors of
glycosylation are cytotoxic, that their effect is
reversible and is not specific for particular oli-
gosaccharide structures. On the other hand,
cells selected for a given phenotype may differ
from the original cell population, not only for
the chosen phenotype but also for many other
properties. Thus, any causal relation between
altered glycosylation and the phenotype of
cancer cells should be considered with great
care.

Oligosaccharide structures specifically
involved in cancer biology

Changes in the following oligosaccharide
structures have often been associated with
human cancer and are important because: (1)
they may be related to .a precise stage of the
disease and their detection with lectins or
monoclonal antibodies may provide useful
diagnostic or prognostic information, or both;
and (2) in many cases they contribute directly
to cancer biology.

POLYSIALIC ACID

Polysialic acid (PSA) is a linear polymer
formed by sialic acid residues usually linked
through 2,8 bonds. This is the only known
instance where sialic acid occurs as an internal
sugar. In mammals PSA occurs virtually only
on N-linked chains of the neural cell adhesion
molecule (N-CAM) and on the o subunit of
sodium channels in the brain. Its pattern of
expression is developmentally regulated: the
number of sialic acid residues arranged as PSA
on N-CAM is around 10 in fetal rat brain and
around two to three in the adult.®® The
maturation dependent shift from the expres-
sion of the high to the low PSA bearing form of
N-CAM plays a pivotal role in controlling the
strength of cell-cell and cell-matrix interac-
tions.” * High PSA bearing N-CAM is ex-
pressed by several human fetal tissues and
re-expressed by the corresponding neoplasms.
Indeed, its presence has been reported in
malignant tumours of neuroectodermal origin,
such as medulloblastomas and neuroblasto-
mas,* and in neuroblastoma cell lines,** ** but
not in ependymomas and gliomas.*' Remark-
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ably, polysialic acid chains longer than 55 resi-
dues have been described in CHP-134 neuro-
blastoma cells.” It should be emphasised that
the presence of the long chains of PSA may
have an enormous effect on the strength of
homophilic binding between N-CAM mol-
ecules on different cells. High PSA is expressed
by small cell lung carcinoma (SCLC),”* a
cancer of neuroendocrine origin with a very
poor prognosis, but not by carcinoids or other
lung tumours. High PSA expression in SCLC
correlates with reduced cell-cell adherence,
greater clonogenic ability in semisolid media
and a significantly higher metastatic ability in
nude mice.” Among thyroid tumours, high
PSA is expressed by medullary carcinomas and
has been proposed as a useful marker to distin-
guish medullary carcinomas from other thyroid
tumours.* The presence of high PSA in the
mesodermally derived Wilms tumour* indi-
cates that the expression of these structures is
not restricted to tissues of neuroectodermal
origin.

SIALIC ACID 02,6-LINKED TO GALACTOSE

In about 90% of colon cancer specimens the
activity of the enzyme catalysing the addition
of sialic acid in o2,6-linkage to galactose
residues of N-linked chains (02,6ST) is
increased.® This results in augmented binding
of the Sambucus nigra lectin (SNA), specific for
0.2,6-linked sialic acid, to histological sections
of the vast majority of grade I and II colon car-
cinomas® *°; the few cases of grade III carci-
noma examined were poorly or non-reactive.”
Among benign lesions, strong SNA reactivity is
expressed only by polyps with severe dyspla-
sia.* *° A very similar pattern of expression was
observed in an histochemical study utilising
the lectin from Trichosanthes japonica, specific
for sialic acid ¢2,6-linked to Galf1,4GIcNAc.”
These data, together with the differentiation
dependent expression of 02,6ST shown by
rat” > and human® intestinal cells, suggest that
a high level of 02,6-sialylation in the colonic
cell is restricted to a specific degree of tissue
differentiation. Enhanced o2,6-sialylation of
galactose in colon cancer has also been found
to be associated with glycolipids.” ** In fibro-
blasts transfection with activated ras oncogenes
results in the enhancement of 02,6ST activity
and mRNA expression,”” *® and in an increased
invasive potential.” A role for this modification
in colon cancer progression is suggested by
several observations. Metastatic specimens of
colorectal cancer express an 02,6ST at even
higher levels than primary tumours.”” Sub-
populations of the adherent colon carcinoma
cell line SW948, which is devoid of a2,6ST
activity, selected for their ability to grow in
non-adherent conditions, express high levels of
02,6ST activity,” suggesting that this sialyl-
linkage contributes to reduced colon cancer
cell adhesion. Murine colon cancer cell lines
selected for the ability to metastasise in the
liver after caecal injection, express two to three
times more SNA binding proteins than the
poorly metastatic parental cell line.”” Variants
of the murine colon cancer cell line MCA-38
with high liver colonising potential express an
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02,6ST mRNA level about fourfold higher
than low liver colonising variants.” Human
colon cancer cell lines grown as xenografts in
nude mice and the xenograft derived cell lines
expressed an «2,6ST activity significantly
higher than that of the parental cell line.** By
contrast, a mutant of the murine melanoma
cell line MDAY-D2, with increased o2,6ST
activity, has a reduced metastatic ability.”” The
recent establishment of a panel of human colon
cancer cell lines differing only in their level of
02,6ST expression, obtained by transfection
with 02,6ST cDNA, should provide more
direct information on the role of a2,6-linked
sialic acid in colon cancer progression.®*

B1-6 BRANCHING

One of the most important cancer related
changes is increased 1,6 branching of
N-linked chains. This modification involves the
presence of an antenna whose first GlcNAc
residue is P1,6-linked to a core mannose
residue (fig 1D) and has been directly associ-
ated with metastatic potential. Transfection of
NIH 3T3 cells with DNA from neuroblastoma
and bladder carcinoma cell lines containing
activated ras oncogenes results in enlarged gly-
coprotein oligosaccharides, detected by a shift
in the gel filtration profile.” *® Glycans from
transfected cells showed an increased affinity to
leukoagglutinin (L-PHA), a lectin specific for
N-linked chains containing a f1,6-linked
antenna.” This modification may also be
caused by transformation with both DNA®
and RNA" tumour viruses and by transfection
with the v-fps/fes oncogene, which encodes a
cytoplasmic tyrosine kinase,” but not by trans-
fection with the nuclear oncogene myc.”! A
direct association between increased [1,6-
branching and metastatic potential is suggested
by several studies. Mutants of MDAY-D2 cells
selected for L-PHA resistance display a tum-
origenic potential similar to that of the parental
cells, but their metastatic potential is dramati-
cally reduced.” The activity of GIcNAc trans-
ferase V, the enzyme responsible for p1,6-
branching, is reduced, as is binding of L-PHA
to 130 kilodalton glycoproteins. Transfection
of the tumorigenic, non-metastatic mammary
adenocarcinoma cell line SP1 with activated
T24H-ras, but not with non-activated c-H-ras,
results in the expression of the metastatic phe-
notype and a concomitant increase in binding
of L-PHA to 130 kilodalton glycoproteins.”
L-PHA reactive oligosaccharides are preferen-
tially expressed by the lysosomal associated
membrane glycoprotein 1 (LAMP-1), a glyco-
protein found largely in lysosomal membranes
and also in the plasma membrane.” ™ It has
been suggested that the presence of B1-6
branched N-linked chains facilitates the inva-
sion of basement membranes.” Clinical studies
revealed an increased level of L-PHA reactivity
in tissue sections of human cancers. In oesopha-
geal carcinomas L-PHA positive cells are
distributed predominantly on the outer surface
of the tumour, adjacent to the surrounding tis-
sue.” All breast carcinomas and epithelial
hyperplasia with atypia showed increased
staining for L-PHA compared with fibroad-
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enomas and hyperplasia without atypia.” In
O-linked chains the presence of a B1,6-linked
GIcNACc residue (in this case to the peptide
linked GalNAc; core 2 structure) has also been
associated with metastatic behaviour and the
activity of the enzyme catalysing this reaction
(core 2 B1,6GIcNAc transferase) is raised in
metastatic murine tumour cell lines,” and also
in human acute myeloblastic and chronic
myelogenous leukaemia cells.” O-linked gly-
cans containing core 2 structures are present,
linked to the major glycoprotein leukosialin, on
the surface of activated T lymphocytes and in
acute T lymphocytic leukaemia cells.* ® By
contrast, in human colon core 2 1,6 GlcNAc
transferase activity decreases during progres-
sion to cancer.” ®

LACTO SERIES CHAINS

As shown in fig 3, galactose may be linked to
GlcNAc either through a B1,3 or through a
B1,4 linkage, forming the two basic units for
linear type 1 and type 2 lacto series chains,
respectively. Repetition of the two basic units
form the extended lacto series chains, fre-
quently found in N- and O-linked glycans of
glycoproteins and in glycolipids. When ex-
tended type 2 chains, which are referred to as
polylactosaminic, are linearly arranged, the “i”
antigen is formed. The presence of a GIcNAc
B1,6-linked to galactose provides a branching
point which, with further elongation, forms the
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Figure 3 Structure of type 1 and type 2 derived glycosidic antigens. In Lewis antigens the
presence of a sialic acid residue linked to galactose generates the corresponding sialyl-Le

antigens.
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“I” antigen (fig 3). The key enzymes control-
ling the elongation (the i antigen) or branching
(the I antigen) of the polylactosaminic chain
are a P1,3GIcNAc transferase and a
B1,6GIcNAc transferase, respectively.®***” Sev-
eral observations indicate that expression of
the Ii antigens is regulated onco-develop-
mentally. Human fetal erythrocytes express the
i antigen, whereas after birth, biosynthesis
shifts toward production of the I antigen.”
Alterations in Ii antigen expression have been
reported in pancreatic and lung cancers,* ¥
while a reduction in overall polylactosami-
noglycan expression occurs on differentiation
of promyelocytic leukaemic cells (HL-60)%
and human colon cancer cells (CaCo-2).”
Extended lacto series chains are important not
only because they are cancer related antigens
but also because they provide the backbone
structure for fucosyl substitutions, which give
rise to ABH and Lewis antigens, and for sialyl
substitutions (fig 3) (see later). In both N- and
O-linked chains polylactosaminic sequences
are mounted preferentially on P1,6-linked
GlcNAc residues™ ™ %; therefore, the expres-
sion of polylactosaminic chains seems to be
controlled by the degree of f1,6-branching.

ABH HISTO-BLOOD GROUP ANTIGENS

ABH antigens are carried by both glycopro-
teins and glycolipids on red blood cells, endo
thelial and epithelial cells of many tissues and
secretions. Detailed descriptions of the cancer
related alterations of these histo-blood group
antigens have been published previously.”**
Aberrant expression of ABH antigens in
tumours encompasses the following: (1) dele-
tion of an antigen normally present in the cor-
responding adult tissue, with concomitant
accumulation of the precursor sugar chain; (2)
re-expression of fetal antigens normally absent
in adult tissue; and (3) “incompatible” antigen
expression which means—for example, that an
individual expressing the B or O phenotype on
erythrocytes may carry the A antigen on colon
cancer cells. Whereas the first and second
modifications may be generated simply by
deregulated expression of one or more of the
glycosyltransferases involved in the biosynthe-
sis of the antigen, the third requires a more
complex explanation. Indeed, A and B alleles
are expressed codominantly and the allele
encoding A GalNAc transferase is not present
in B or O individuals. The genetic and
biochemical basis of this phenomenon is
largely unknown. However, it should be
remembered that the A and B transferases dif-
fer only by four amino acid substitutions®” and
that under some circumstances the B galacto-
syltransferase may also transfer GalNAc.”
Screening of gastric cancer specimens from
blood group O individuals with a monoclonal
antibody directed against A-transferase re-
vealed the presence, in 10% of the cases, of the
transferase molecule and the corresponding
enzyme activity.” ABH antigens are expressed
by fetal human colon according to the
individual’s blood type. After birth, the expres-
sion of A, B and H becomes restricted to the
proximal colon.' In colon cancer this
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proximal—distal gradient of expression is lost
because of enhanced distal expression of these
antigens.'® Other examples of aberrant expres-
sion of ABH antigens have been reported in
pancreatic cancer,'” hepatocellular carci-
noma,'” bladder and oral carcinoma,'® '* and
ovarian cancer.'” In lung cancer the loss of
ABH antigens has been positively correlated
with metastatic potential and consequently
with adverse prognosis.'®® However, this rela-
tion was not confirmed in another study.'”

LEWIS ANTIGENS

As shown in fig 3, Lewis antigens are
originated by the mono- or di-fucosyl substitu-
tion of type 1 or type 2 chains. Termination of
the sugar chain with sialic acid forms the
corresponding sialyl-Lewis antigen. Aberrant
expression of Lewis-type antigens has been
reported for many cancers, including those of
the lung,'”® colon,'” ' stomach,'"” and kid-
ney."”” These antigens are frequently shed into
the blood stream.'” Sialyl-Le®, detected by
monoclonal antibody N19-9, is a useful marker
of pancreatic cancer.'”* The interest in the
expression of Lewis antigens in cancer in-
creased enormously after the discovery that
sialyl-Le* acts as a ligand for E-selectin (previ-
ously known as ELLAM-1), a lectin-like cell
adhesion molecule expressed on activated
endothelial cells.'"”” ''® Recently, Bergh et al
reported that the closely related sialyl-Le* anti-
gen is also a ligand for E-selectin.'”” Moreover,
sialyl-Le* may also be recognised by selectins P
and L, two other members of the selectin
superfamily.''® E-selectin, the physiological role
of which is to mediate leucocyte extravasation
at sites of tissue damage or injury, may regulate
a key event in metastasis formation, causing
the arrest of cancer cells expressing the appro-
priate ligand (that is, sialyl-Le*) on endothelial
cells. Many observations indicate that sialyl-
Le*/sialyl-Le*~E selectin interactions contrib-
ute fundamentally to the adhesion of cancer
cells to endothelium.'*"'*** A study carried out
on panels of leukaemia and epithelial cancer
cell lines reported that all cell lines of epithelial
origin can adhere to vascular endothelium
through E-selectin mediated interactions. Ad-
hesion of cells of colonic and pancreatic origin
depended mainly on sialyl-Le*. In those
originating in the lung and liver sialyl-Le* con-
tributed significantly to adhesion. Only three of
12 leukaemia cell lines showed E-selectin
mediated adhesion to endothelial cells, exclu-
sively through sialyl-Le*.'"*' The importance of
sialyl-Le*/sialyl-Le* antigens in the regulation
of the metastatic cascade has been confirmed
in clinical studies. In a study on colorectal can-
cer, expression of both antigens was higher in
metastatic lesions than in the primary tu-
mours.'” In non-small cell lung cancer, expres-
sion of the sialyl-Le* antigen correlates with a
shorter disease-free survival,’”* while postop-
erative survival was shorter in patients with
tumours expressing both sialyl-Le* and Le*
antigens and Le’.'” In melanomas sialyl-Le®
expression is correlated with tumour progres-
sion.'?® Sialyl dimeric Le*, an antigenic variant
defined by monoclonal antibody FH6, is
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generated by di-fucosyl substitution of an
extended type 2 chain (fig 3) and seems to be
involved in cancer progression. Expression of
this antigen is restricted to poorly differenti-
ated areas in primary colonic tumours'”’ and
enhanced in liver metastases.'”® Colon cancer
cells selected for high or low sialyl dimeric Le*
antigen expression display a concomitant high
or low ability to invade in vitro reconstituted
membranes.’” A direct correlation between
sialyl dimeric Le* expression and lymph node
metastasis formation has been described for
transitional cell carcinoma of the human
urinary bladder."

T, TN AND SIALYL-TN ANTIGENS

This group of antigens, whose structure is
shown in fig 2, represents truncated forms of
O-linked chains, which can be detected by
monoclonal antibodies or lectins (Arachis
hypogea, PNA for T antigen; Vicia villosa, VVA
or Helix pomatia, HPA for Tn antigen). In
normal tissues these antigens are often present
in a “cryptic” form—that is: (1) they are
masked by the presence of more distal sugar
residues, mainly sialic acid; and (2) they are
hidden by nearby elaborate glycan structures.
In normal human urothelium—for example,
the T antigen is substituted with sialic acid
(sialy-T antigen) and is not readily detect-
able,” '’ unless the samples are treated with
sialidase. Pelvic lymph node metastases were
detected only in patients whose primary
bladder carcinoma was T-antigen positive."”’ In
a percentage of bladder tumours the expres-
sion of T antigen is increased and has been
correlated, in non-invasive tumours, with sub-
sequent invasion.'” Other investigators pro-
posed the combined use of T and Tn antigens
for estimating the degree of malignancy of
bladder carcinoma.'” Expression of the Tn
epitope, as detected with HPA, is a functional
predictor of aggressiveness in breast car-
cinoma."**"*® Colonic tumours are probably the
best studied model of T and Tn related antigen
expression. Practically, none of these antigens
is expressed in normal adult epithelium. T and
Tn antigens are weakly expressed by hyper-
plastic polyps, while T, Tn and sialyl-Tn are
expressed by adenomatous polyps and
carcinomas.” '’ **"**2 The biochemical basis of
aberrant expression of these antigens in colon
cancer is complex and incompletely
understood—for example, the activity of 02,6
sialyltransferase synthesising the sialyl-Tn anti-
gen seems to be decreased rather than
increased in tumour tissues.'” The reduction
in core 3 GIcNAc transferase activity, which
normally competes with core 1 galactosyltrans-
ferase, reported in colon cancer tissues® and
cell lines,” may contribute to the increased
expression of T antigen. Of the three mucin
associated antigens, sialyl-Tn seems to be the
most reliable tumour marker. Indeed, it is
rarely expressed by hyperplastic polyps but in
adenomas it is preferentially expressed by the
larger and more dysplastic lesions.” In colorec-
tal cancer sialyl-Tn is expressed by 87% of
cases, regardless of age, gender, location,
Dukes’ stage, degree of differentiation, and
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ploidy. Five year survival is 100% for sialyl-Tn
negative compared with 73% for sialyl-Tn
positive patients.'* Expression of sialyl-Tn has
been proposed, together with tumour ploidy, as
the most important variant for predicting
disease-free and overall survival.'** Sialyl-Tn
expression is a marker of malignancy and is
associated with a poor prognosis in many can-

cers,'” including those of the pancreas,® '*'*

stomach and oesophagus,'®'* ovary,"
breast,'” and endometrium.'”® In Borrmann
type IV gastric carcinoma, sialyl-Tn expression
correlates with lymph node and peritoneal dis-
semination and with a higher proliferative
activity, as measured by argyrophilic nuclear
organiser region (AgNOR) counts.™ Recent
reports indicate that reactivity of normal colon
cancer sections with the sialyl-Tn specific
monoclonal antibody TKH2 may be increased
up to the levels characteristic of cancer samples
by treatments which release O-acetyl groups
from sialic acid.'” "** As O-acetylation is a
modification of sialic acid that occurs more
frequently in normal than in cancerous colon,
it is possible that the different reactivities
observed with TKH2 antibody reflect the loss
of O-acetyl substituents by sialic acid rather
than an accumulation of the disaccharide. This
mechanism does not seem to be operating in
cancers of the stomach and pancreas."” The
possibility that mucins carrying the sialyl-Tn
epitope play an important role in cancer
biology is indicated by the observation that NK
cell mediated lysis of conventional target K562
cells may be inhibited by ovine submaxillary
mucin (OSM), a mucin bearing the sialyl-Tn
antigen.”” The close association between Tn
and sialyl-Tn antigens and neoplastic transfor-
mation prompted some investigators to use
such antigens for active immunotherapy. Mice
immunised with desialylated OSM (that is,
carrying the Tn antigen) were protected when
challenged with highly invasive Tn antigen
expressing, syngeneic mammary tumour
cells.”® Studies carried out on humans indicate
that treatment with a vaccine consisting of par-
tially desialylated OSM or of sialyl-Tn disac-
charide chemically linked to keyhole limpet
haemocyanin in association with an adjuvant
may induce a humoral immune response
against these tumour associated antigens.'” '
However, sialyl-Tn positivity is related, either
directly or indirectly, to resistance to adjuvant
chemotherapy in patients with breast cancer.'®

Concluding remarks

Since early observations in the late 1970s, sug-
gesting a role for complex carbohydrates in
cancer biology, the contribution of some
cancer related oligosaccharide sequences to the
expression of an invasive phenotype has been
established. The expression of some of these
structures shows a strict correlation with
tumour aggression and their detection by
lectins or monoclonal antibodies is useful for
the clinical management of patients with
cancer. The use of glycosylation inhibitors,
such as swainsonine, as antineoplastic agents
or attempts to use the sialyl-Tn epitope for
active anticancer immunotherapy are promis-

Dall’Olio

ing new approaches for the treatment of
cancer. The goal for the next few years will be
the elucidation of the precise molecular
interactions involving carbohydrate chains in
the hope that this will facilitate the design of
drugs directed against specific steps of cancer
progression.
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