

Supplementary Figure 1. Generation of mice bearing a Cre-conditional Tlr4 null allele

(**Tlr4^{fl}**). (a) Schematic diagram of the targeting strategy. (b) PCR analysis of tail-genomic DNA of mice bearing wild-type (WT) and/or floxed allele. PCR products of WT and floxed allele are 260 bp and 343 bp, respectively. (c) Circulating levels of Tnf α were measured in wild-type (WT) and Tlr4^{KO} mice (6-8 weeks of age, n = 4-6) 1.5 h after intraperitoneally injection of lipopolysaccharide (LPS, 1mg kg⁻¹ body weight). (d) Levels are presented as a percentage relative of Tlr4^{fl/fl} levels. ***p<0.001, compared between WT and Tlr4^{KO} mice (Student's t-test). All data are presented as means ± s.e.m.

Supplementary Figure 2. Tlr4^{fl/fl} and Tlr4^{LKO} mice showed similar adiposity and comparable plasma leptin concentrations. (a) Body weight curves in Tlr4^{fl/fl} and Tlr4^{LKO} mice on a chow (n = 8) or HFD (n = 10-11) for 12 weeks. (b) Epididymal fat pad weight in mice after either chow (n = 8) or HFD (n = 10-11) for 12 weeks. (c) H&E staining of epididymal adipose tissue sections from HFD-fed mice. Scale bars, 200 μ m. (d) Plasma leptin concentrations (n = 9) in mice on HFD. [#]p <0.05, compared between different diets for mice of the same genotype (Student's t-test). All data are presented as means ± s.e.m.

Supplementary Figure 3. HFD-fed Tlr4^{LKO} mice had reduced blood glucose levels under fed condition. (a-b) Blood glucose levels (a, n = 19-22) and plasma insulin concentrations (b, n = 5) in Tlr4^{fl/fl} and Tlr4^{LKO} mice after 8 weeks of chow or HFD collected under either fed or overnight fasting states. (c-d) Chow-fed Tlr4^{fl/fl} and Tlr4^{LKO} mice (n = 8) were fasted for 5 h for (c) glucose tolerance test (GTT, 1.2 mg g⁻¹ BW) and (d) insulin tolerance test (ITT, 1.5 mU g⁻¹ BW). *p < 0.05, compared between Tlr4^{fl/fl} and Tlr4^{LKO} mice on the same diet; [#]p <0.05, compared between different diets for mice of the same genotype (Student's t-test). All data are presented as means \pm s.e.m.

Supplementary Figure 4 b a Blood glucose (mg dl⁻¹) Body weight (g) TIr4^{fi/fi} TIr4^{LKO} T Ir 4^{f I/f I} T Ir 4^{LKO} Time (min)

Supplementary Figure 4. Tlr4^{fl/fl} and Tlr4^{LKO} mice had similar body weight and comparable blood glucose levels during hyperinsulinemic-euglycemic clamp experiment. After 16 weeks HFD feeding, hyperinsulinemic-euglycemic (10 mU kg⁻¹ min⁻¹, 150 mg dl⁻¹, respectively) clamps of 120 minutes were performed in conscious, chronically catheterized, 4- to 5-hour-fasted Tlr4^{fl/fl} and Tlr4^{LKO} mice (n = 6-7). (a) Body weight. (b) Blood glucose levels during the clamps. All data are presented as means \pm s.e.m.

Supplementary Figure 5

Supplementary Figure 5. HFD-fed Tlr4^{LKO} mice exhibited similar plasma lipid concentrations compared to their controls. Mice were fed HFD for 12 weeks (n = 7-9). (a) Plasma levels of triglyceride. (b) Plasma cholesterol levels. (c) Plasma non-esterified fatty acids (NEFA) levels. All data are presented as means \pm s.e.m.

Supplementary Figure 6. Macrophage Tlr4 deficiency does not protect mice from dietinduced hepatic steatosis. (a) Epididymal fat pad weight in mice after either chow (n = 6-10) or HFD (n = 7-8) for 12 weeks. (b) Liver weight in mice fed either chow (n = 7-10) or HFD (n = 13) for 12 weeks. (c) Liver triglyceride contents in HFD-fed mice (n = 6-7). (d) Liver cholesterol contents in HFD-fed mice (n = 7). $^{\#}p < 0.05$, compared between different diets for mice of the same genotype (Student's t-test). All data are presented as means \pm s.e.m.

Supplementary Figure 7.Scanned western blot of p-Akt in white adipose tissue (WAT) in Figure 2g.

Scanned western blot of total Akt (t-Akt) white adipose tissue (WAT) in Figure 2g.