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1 MODEL DETAILS
Detailed structure of our model is shown as a Bayesian network in
Supplementary Figure 7, see, e.g., Neapolitan (2004). The priors for
the the low-rank covariance inducing part of the model, HΛ + E,
are set exactly as in Bhattacharya and Dunson (2011), as follows:

λjh|φΛ
jh, τh ∼ N

(
0, (φjhτh)−1) , φΛ

jh ∼ Ga(ν/2, ν/2),

τh =

h∏
l=1

δl δ1 ∼ Ga(a1, 1), δl ∼ Ga(a2, 1), l ≥ 2,

σ−2
j ∼ Ga(aσ, bσ), (j = 1, . . . , P ), (1)

where δl (l = 1, . . . ,∞) are independent, τh is a global shrinkage
parameter for the hth column of Λ and φΛ

phs are local shrinkage
parameters for the elements of the hth column to increase flexibility
of the prior.

For the SNP-to-phenotype regression coefficient matrix, Θ =
ΨΓ, we introduce a prior similar to (1). For the matrix Ψ = [ψjh]:

ψjh|φΨ
jh, τ

∗
h ∼ N

(
0,
(
φΨ
jhτ
∗
h

)−1
)
,

φΨ
jh ∼ Ga(ν/2, ν/2), τ∗h =

h∏
l=1

δ∗l ,

δ∗1 ∼ Ga(a3, 1), δ∗l ∼ Ga(a4, 1), l ≥ 2, (2)

where the parameter τ∗h acts as a global shrinkage parameter for the
hth column of Ψ. The priors for the matrix Γ = [γjh] are set as
follows:

γjh|τ∗j ∼ N
(

0,
(
τ∗j
)−1
)
. (3)

Here we include the elementwise shrinkage parameters φΨ
jh only

for matrix Ψ and not for Γ to represent our prior expectation of
associations to be sparse on the SNP side but dense on the metabolite
side. Note that in (3), the parameters τ∗j represent global shrinkage
parameters for the rows of Γ, as opposed to (1) and (2) in which
the columns were shrunk. Furthermore, note that the parameters τ∗h
and δ∗l and the corresponding hyperparameters a3 and a4 are shared
between Ψ and Γ, because the scales of Ψ and Γ are not identifiable
separately. The hyperparameter ν is common also with the prior

∗to whom correspondence should be addressed

for Λ given in (1), and we use a fixed value ν = 3 similarly to
Bhattacharya and Dunson (2011).

The prior distributions for hyperparameters a3 and a4 are set
using results from the next section. Equation (16) specifies the con-
tribution of the first component to the overall explained variation.
This formula is used to select the parameters of a Gamma distribu-
tion for a4 which imposes the distribution of the contribution of the
first component to have quantiles q0.01 = 0.3 and q0.99 = 0.999,
i.e. the contribution of the first component is with probability 0.98
in the interval 30%-99.9%. However, we note that with K1 = 1,
the first component explains the full effect and a4 is not actually
needed. Second, using Equation (15), a Gamma distribution is spe-
cified for a3 which imposes the mean PTVE, µPTVE to satisfy the
properties of the informative prior distribution, as specified in the
main document. To solve for a3 using Equation (15), we use Monte
Carlo simulation to integrate out a4.

2 RELATION TO OTHER METHODS
2.1 Canonical correlation analysis
Canonical correlation analysis (CCA) is a classical tool that can
be used for measuring the strength of association between multi-
variate data sets (Hotelling, 1936). CCA has recently been used to
investigate associations between multiple SNPs and multiple phe-
notypes (Tang and Ferreira, 2012; Marttinen et al., 2013). However,
with CCA, the a priori expected strength of association is stron-
ger when testing with a greater number of SNPs. This results in
reduced power when a set comprises only a few SNPs, and over-
fitting when testing with larger sets. Although recently introduced
sparse variants of CCA (Waaijenborg et al., 2008; Witten et al.,
2009; Parkhomenko et al., 2009) can be used to alleviate the pro-
blem of overfitting, there does not seem to exist a fully satisfactory
solution for correcting for this bias. Furthermore, canonical correla-
tion analysis disregards the directionality of the association studies
following from the causal understanding of the problem, namely
that the SNPs are affecting the phenotypes, and not the other way
around. Due to this, the interpretation of the outcome from canonical
correlation analysis may be cumbersome and incorporating external
knowledge in terms of intuitive prior distributions may not be strai-
ghtforward, although model-based formulations exist (Klami and
Kaski, 2007; Wang, 2007).
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2.2 Regression models with latent confounding factors
The importance of accounting for latent non-genetic factors in asso-
ciation studies is well acknowledged (Stegle et al., 2010; Fusi et al.,
2012). Let Y = (y1, . . . ,yG) here denote a collection of G phe-
notypes from N individuals, i.e. Y has N rows. Joint modelling
of confounding factors and causal SNPs is based on estimating the
model

Y = µ+ SV + XW + ε, (4)

where S = (s1, . . . , sK) is the collection of K vectors sk of length
N comprising the observed SNPs from N individuals. Matrix
X = (x1, . . . ,xQ) is a collection ofQ hidden factors. Noise matrix
ε contains i.i.d. univariate noise terms εng ∼ N(0, σ2

e). The differe-
nce to our model is that in our model several SNPs are affecting the
phenotypes through the reduced rank regression formulation, whe-
reas here a standard regression is utilized, typically for just one SNP
at a time.

2.3 Reduced rank regression
Baysian reduced rank regression, originally presented by Geweke
(1996), is based on the model

Y = XΨΦ + ZA+ E, (5)

where the matrices are interpreted similarly to our model. The main
difference is that in (5) the rows ofE are assumed to follow a multi-
variate normal distribution with covariance matrix Σ, which is given
Inverse-Wishart prior distribution. In our approach a low-rank noise
covariance is assumed, see the model description in the main docu-
ment. Another difference is that in (5) the columns of Ψ and rows of
Γ are given symmetric priors, but identifiability is ensured by fixing
certain elements in the matrices to unity. In our model we shrink the
columns of Ψ and rows of Γ increasingly, encouraging the largest
effects to correspond to the first columns/rows.

A comparison carried out by (Carriero et al., 2011) showed
that rank reduction combined with shrinkage from Bayesian priors
improves substantially the accuracy of predictions in a multivariate
time series (52 variables), compared to some alternatives (classical
reduced rank regression, factor models, Bayesian VAR, multivariate
boosting). Another recent article by Vounou et al. (2010) presents a
regularized reduced rank regression model, and uses this for asso-
ciation studies where the phenotype is a high-dimensional vector
of brain-features. They showed that the model outperforms the
standard exhaustive pairwise testing approach. However, the corre-
lations between the phenotypes were not taken into account in their
method.

2.4 Bayesian infinite sparse factor analysis
Bayesian infinite sparse factor analysis model presented in Bhatta-
charya and Dunson (2011) is defined by:

yi = Λhi + εi, εi ∼ Np(0,Σ),

where Λ is a factor loadings matrix, hi is a vector of hidden
factors, and Σ = diag(σ2

1 , . . . , σ
2
p). Bhattacharya and Dunson

(2011) assume that Λ has infinitely many columns, however, such
that the induced covariance matrix, ΛΛT + Σ stays finite. This
is achieved by introducing a prior that shrinks the columns of Λ

increasingly as the column index increases. Note that although Λ
is not rotation invariant, the prior induced on the covariance does
not depend on the rotation. Furthermore, the prior encourages that
the first columns of Λ to correspond to the most influential latent
confounders. In our method, we use this factor analysis model to
represent the multivariate noise.

3 PTVE-RARE SCORE
Let x denote here the S-dimensional SNP-vector and y the P -
dimensional phenotype. Suppose we are interested in the prediction
ŷp for the pth phenotype. By letting θ denote here the pth column
from the regression coefficient matrix Θ = ΨΓ, we can write:

ŷp = θTx

= θTRxR + θTCxC ,

where xR and xC are subvectors of x comprising the rare and the
common variants with the corresponding division of the regression
coefficients into θR and θC . The variance of the prediction can be
divided similarly:

Var(ŷp) = θTRVar(xR)θR + θTCVar(xC)θC

+2θTCCov(xC , xR)θR.

We define the part of the variation of ŷp attributed to the rare variants
as:

Var-rare(p) ≡ θTRVar(xR)θR + θTCCov(xC , xR)θR. (6)

The variation due to the cross-correlation term 2θTCCov(xC , xR)θR
is in (6) divided evenly between the rare and common variants.
This prevents counterintuitive situations possibly caused by nega-
tive correlation between the rare and the common variants where
the variation due to the rare variants might be larger than the total
variance. The PTVE-rare score is now defined as

PTVE-rare =

∑P
p=1 Var-rare(p)

Tr(Cov(Y ))
.

It is straightforward to estimate the posterior distribution of PTVE-
rare similarly to PTVE using samples from the posterior distribution
of the parameters.

4 COMPUTATION
For estimating the parameters of the model, we use the Gibbs sam-
pling Markov chain Monte Carlo (MCMC) algorithm for reduced
rank ragression (Geman and Geman, 1984; Geweke, 1996; Karls-
son, 2012). The algorithm iteratively updates the parameters of
the model one-by-one by sampling them from their conditional
posterior probability distributions, given the current values of other
parameters, and it is theoretically guaranteed to produce samples
from the posterior distribution facilitating inferences concerning
both qualitative aspects of the model (which SNPs affect which
factors, which factors affect which phenotypes) and quantitative
aspects of the model (the sizes of the effects).

However, when we experimented with the standard formulation
of the Gibbs sampling algorithm, we found it to exhibit unstable
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behavior when trying to learn the very small effects present in the
genomics data: sometimes the algorithm got stuck into a single
mode for an arbitrary number of iterations, and suddenly switched
into a different mode, rendering the results useless in practice (run-
ning long enough to reach convergence over the different modes
was not feasible in practice). The unsatisfactory behaviour has been
discussed by others as well, and a solution based on restricting the
lengths of the row-vectors of Γ has been suggested (Koop et al.,
2006). Recently, an informative prior formulation utilizing the cor-
relations between the responses has been proposed (Gillberg et al.,
personal communication).

Here, we approximate the posterior distribution by using a point
estimate for one of the parameters, Γ, leading to sensible results in
practice. An efficient two-stage strategy is used for computing the
approximation: first, the algorithm starts with an informative initi-
alization based on the singular value decomposition, followed by a
short MCMC run, and a point estimate Γ̄ is computed using sam-
ples from the second half of the simulation. In the second stage the
MCMC is run until convergence to learn the rest of the parameters,
keeping Γ̄ fixed in order to prevent the unwanted mode switching.
The interpretation of the procedure is that, in the first stage, a com-
bination of phenotypes putatively affected by the SNPs is learned. In
the second stage, the SNPs, if any, affecting the combination and the
effect sizes are thoroughly estimated. Details of the Gibbs sampling
algorithm are provided in the next Section.

5 GIBBS SAMPLING UPDATES FOR THE
REDUCED RANK REGRESSION

The Gibbs sampling algorithm proceeds by alternatingly updating
the reduced rank regression part of the model XΨΓ, and the noise
model HΛT + E. The standard regression ZA could be updated
similarly; however, we regress out the known factors as a preproces-
sing step, hence these updates are not shown here. For updating the
parameters related to the reduced rank regression part of the model,
{Ψ,Γ,ΦΨ, a3, a4, δ

∗
l }, we first compute the residuals

Y ∗ = Y −H(i)ΛT (i),

where H(i) and ΛT (i) are the current values of the corresponding
variables. The parameter updates, given the residuals, are strai-
ghtforward modifications of the updates for the standard Bayesian
reduced rank regression model (Geweke, 1996; Karlsson, 2012) and
they are provided below. Then, we calculate residuals

Y ∗∗ = Y −XΨ(i)Γ(i),

where Ψ(i) and Γ(i) are now the current values of the Ψ and Γ
parameters. Given the residuals Y ∗∗ the noise model including para-
meters

{
Λ, H,ΦΛ, a1, a2, δl

}
can be updated using Gibbs sampling

steps derived for a Bayesian factor analysis model (Bhattacharya
and Dunson, 2011). As we use exactly the same formulation for our
noise model, these steps will not be repeated here.

Gibbs sampling MCMC updates for the original Bayesian redu-
ced rank regression were derived by Geweke (1996) and Karlsson
(2012). Here we derive updates for the reduced rank regression para-
meters Γ and Ψ (and related hyperparameters) which are accom-
modated to our specific model formulation. The derivations follow
straightforwardly as most distributions are of semi-conjugate form.

To keep the notation simple, let Y here represent the residuals,
Y − HΛT − ZA, where effects of the latent factors have been
removed, such that Y can be written as

Y = XΨΓ + E, (7)

where the columns of E are independent.
In deriving the update equations, we exploit a standard result for

Bayesian linear regression, see e.g. Bishop et al. (2006), which
states that if

β ∼ N(0,Σβ)

and

y|X ∼ N (Xβ,Σy) , (8)

then

β|y,X ∼ N(Σβ|y(XTΣ−1
y y),Σβ|y), (9)

where

Σβ|y ∼
(

Σ−1
β +XTΣ−1

y X
)−1

.

This result can be used in order to derive the conditional distribu-
tions for Ψ and Γ, by transforming the reduced rank regression (7)
appropriately into the form of the standard linear regression model
(8).

5.1 Update for Γ

Because the columns of the residual matrix E are independent, we
can update the columns Γi one-by-one by observing that

Yi ∼ N
(
XΨΓi, σ

2
i IN

)
, i = 1, . . . , P,

which immediately leads to update equations

π(Γi|Y,Θ−Γ) = N
(
µΓi|Y,Θ−Γ

,ΣΓi|Y,Θ−Γ

)
, i = 1, . . . , P,

where

µΓi|Y,Θ−Γ
= ΣΓi|Y,Θ−Γ

(
ΨTXTYi

)
σ−2
i

ΣΓi|Y,Θ−Γ
=
(

Σ−1
Γi

+ σ−2
i ΨTXTXΨ

)−1

,

where ΣΓi is a diagonal matrix with prior variances of the elements
of Γi, see (3), collected of the diagonal.

5.2 Update for Ψ

In order to derive the update equations for Ψ, the model (7) is written
in a vectorized form as follows:

vec(Y ) ∼ N
((

ΓT ⊗X
)

vec(Ψ),ΣE ⊗ IN
)
,

where ΣE is a diagonal matrix with variances of the columns of E
on the diagonal. Again, the conditional distribution follows by appl-
ying the results for the linear model (9) and applying straightforward
algebra for Kronecker products:
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π(vec(Ψ)|Y,Θ−Ψ) = N(µΨ|Y,Θ−Ψ
,ΣΨ|Y,Θ−Ψ

),

with

µΨ|Y,Θ−Ψ
= ΣΨ|Y,Θ−Ψ

vec
(
XTY Σ−1

E ΓT
)

ΣΨ|Y,Θ−Ψ
=
(

Σ−1
Ψ +

(
ΓΣ−1

E ΓT
)
⊗
(
XTX

))−1

,

where ΣΨ is a diagonal matrix, with prior variances, see (2) of the
elements of Ψ, read columnwise, on the diagonal.

5.3 Update for ΦΨ

Recall from (2) that the element φΨ
jh appears as a factor in the

precision of ψjh, the (j, h)th element of the Ψ matrix and has
the conjugate prior distribution Ga(ν/2, ν/2). Thus, it follows
that ΦΨcan be updated element-by-element using the conditional
distrbution:

φΨ
jh ∼ Ga

(
shape = αφΨ

jh
|Y,Θ−φΨ

jh

, rate = βφΨ
jh
|Y,Θ−φΨ

jh

)
,

where

αφΨ
jh
|Y,Θ−φΨ

jh

=
ν + 1

2

βφΨ
jh
|Y,Θ−φΨ

jh

=
1

2

(
ν + τhψ

2
jh

)
.

5.4 Update for δ∗l , l = 1, . . . ,K1

First, notice that δ∗1 appears as a factor in the precision of normally
distributed variables (the elements of first the column of Ψ and the
first row of Γ) and has the conjugate Ga(a3, 1) prior, see Equations
(2) and (3). Therefore, the conditional posterior distribution of δ∗1 is
also a Gamma distribution, with parameters as follows:

π
(
δ∗1 |Y,Θ−δ∗1

)
= Ga

(
shape = αδ∗1 |Y,Θ−δ∗1

, rate = βδ∗1 |Y,Θ−δ∗1

)
,

where

αδ∗1 |Y,Θ−δ∗1
= a3 +

(P + S)K1

2

βδ∗1 |Y,Θ−δ∗1
= 1 +

1

2

(
K1∑
h=1

τ
(1)
h

S∑
j=1

φΨ
jhψ

2
jh +

K1∑
j=1

τ
(1)
j

P∑
h=1

γ2
jh

)
,

where we have used notation τ
(l)
h =

∏
t=1,...,h,t 6=l δ

∗
t , h, l =

1, . . . ,K1.
Similarly, the δ∗l appears as a factor in the precisions of columns

from l toK1 of Ψ and the corresponding rows of Γ. The conditional
distribution of δ∗l is therefore

π
(
δ∗l |Y,Θ−δ∗l

)
= Ga

(
shape = αδ∗

l
|Y,Θ−δ∗

l
, rate = βδ∗

l
|Y,Θ−δ∗

l

)
,

where

αδ∗
l
|Y,Θ−δ∗

l
= a4 +

(P + S)(K1 − l + 1)

2

βδ∗
l
|Y,Θ−δ∗

l
= 1 +

1

2

K1∑
j=l

τ
(l)
j

P∑
h=1

γ2
jh +

K1∑
h=l

τ
(l)
h

S∑
j=1

φΨ
jhψ

2
jh



5.5 Update for a3 and a4

The conditional distribution of these parameters, given data and
all other parameters, is not of simple form, therefore we update
the parameters jointly using a Metropolis-Hastings step within the
Gibbs sampler. Let a∗3 and a∗4 denote the proposed values. The
sampler switches to the new values with probability

min {1, α [(a3, a4) −→ (a∗3, a
∗
4)]}

where the acceptance ratio is the following:

α [(a3, a4) −→ (a∗3, a
∗
4)]

=
π
(
a∗3, a

∗
4|Y,Θ−(a∗3 ,a∗4)

)
J [(a∗3, a

∗
4)→ (a3, a4)]

π
(
a3, a4|Y,Θ−(a3,a4)

)
J [(a3, a4)→ (a∗3, a

∗
4)]

. (10)

Here, J denotes the proposal distribution that consists of proposing
the new values for the two parameters independently of each other:

J [(a3, a4)→ (a∗3, a
∗
4)] = J ′ (a3 → a∗3) J ′ (a4 → a∗4) .

The new values are proposed on a logarithmic scale from a normal
distribution centered on the current value, as follows:

J ′ (a→ a∗) = N(log(a∗)|mean = log(a), sd= log(a)/10).

The posterior distribution π
(
a3, a4|Y,Θ−(a3,a4)

)
appearing in the

acceptance ratio (10) has the following form

π
(
a3, a4|Y,Θ−(a3,a4)

)
∝ Ga(a3|αa3 , βa3)Ga(a4|αa4 , βa4)

×Ga(δ∗1 |a3)

K2∏
l=2

Ga(δ∗l |a4). (11)

The proportionality in (11) includes the truncation of the gamma
prior distributions to legitimate values a3 > 2 and a4 > 3, such
that the results from Supplementary Section 6 can be applied. How-
ever, the proportionality constant is the same in the numerator and
denominator of (10) and, thus, cancels in the computations.

6 PROOFS
In this section we derive results which characterize the depende-
ncy of the prior distribution of PTVE on the model hyperparameter
a3 and a4. The following lemma shows that the amount of varia-
nce of the ith phenotype explained by the hth component, given a
fixed value of the variance parameter τ∗h , is proportional to the total
variation of the SNPs that are used as predictors.
Lemma 1:

V ar(xTΨhγhi|τ∗h) = 3 (τ∗h)
−2

S∑
i=1

V ar(xi)

Proof of Lemma 1:
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V ar(xTΨhγhi|τ∗h) = Var(xTΨh|τ∗h)V ar(γhi|τ∗h)

= (τ∗h)
−1
E
(
xtΨhΨT

hx|τ∗h
)

= (τ∗h)
−1
E
(

Tr
{
xtΨhΨT

hx
}
|τ∗h
)

= (τ∗h)
−1
E
(

Tr
{
xxtΨhΨT

h

}
|τ∗h
)

= (τ∗h)
−1 Tr

{
E
(
xxtΨhΨT

h |τ∗h
)}

= (τ∗h)
−1 Tr

{
E
(
xxt|τ∗h)E(ΨhΨT

h |τ∗h
)}

= (τ∗h)
−1 Tr

{
E(xxt)E[(φΨ

1h)−1] (τ∗h)
−1
I
}

= (τ∗h)
−2
E[(φΨ

1h)−1]Tr
{
E(xxT )

}
= (τ∗h)

−2 ν

ν − 2
Tr
{
E(xxT )

}
= (τ∗h)

−2 ν

ν − 2

S∑
i=1

Var(xi).

The lemma follows when ν = 3.

Recall that τ∗h =
∏h
l=1 δ

∗
l . Thus, if the parameters δ∗l are given, the

variance explained by all components is obtained by summing over
the components:

∞∑
h=1

Var(xTΨhγhi|δ∗l , l = 1, . . .) (12)

=

[
ν

ν − 2

S∑
i=1

Var(xi)

]
∞∑
h=1

(δ∗1)
−2

h∏
l=2

(δ∗l )
−2 (13)

We can take an expectation of (13) over the distribution of δ∗l , l =
1, 2, . . .

E

[
∞∑
h=1

Var(xTΨhγhi|δ∗l , l = 1, . . .)

]

=

[
ν

ν − 2

S∑
i=1

Var(xi)

]
∞∑
h=1

E
[
(δ∗1)

−2
] h∏
l=2

E
[
(δ∗l )

−2
]

=

[
ν

ν − 2

S∑
i=1

Var(xi)

]
∞∑
h=1

E
[
(δ∗1)−2]E [(δ∗2)−2]h−1

=
ν

ν − 2

S∑
i=1

Var(xi)
E
[
(δ∗1)−2

]
1− E [(δ∗2)−2]

(14)

The convergence of the infinite sum is guaranteed as long as
E[(δ∗1)−2] < ∞ and E[(δ∗2)−2] < 1, for which sufficient con-
ditions are a3 > 2 and a4 > 3, see below. The expectation for
the proportion of total variation explained is obtained by multipl-
ying (14) with the number of phenotypes and dividing by the total

variation in the phenotypes,
∑P
i=1Var(Yi), yielding

νP

ν − 2

E
[
(δ∗1)−2

]
1− E [(δ∗2)−2]

∑S
i=1 Var(xi)∑P
i=1 Var(Yi)

By plugging in the expectations

E
[
(δ∗1)−2] =

Γ(a3 − 2)

Γ(a3)
and E

[
(δ∗2)−2] =

Γ(a4 − 2)

Γ(a4)

we get our first corollary:

Corollary 1: The expected proportion of the total variation explai-
ned by all SNPs, given fixed values of the hyperparameters a3 and
a4 is equal to

νP

ν − 2

Γ(a3 − 2)/Γ(a3)

1− Γ(a4 − 2)/Γ(a4)

∑S
i=1 Var(xi)∑P
i=1 Var(Yi)

. (15)

The second corollary specifies the share of the total variation explai-
ned that can be attributed to the first component, and is obtained
straightforwardly from the calculations above.

Corollary 2: Suppose we are given fixed values of hyperparame-
ters a3 and a4. Of the proportion of total variation that is explained
by all components, given in (15), the share of the first component is
equal to

E(δ−2
1 )/

E(δ−2
1 )

1− E(δ−2
2 )

= 1− E(δ−2
2 ) = 1− Γ(a4 − 2)

Γ(a4)
. (16)

7 REPLICATION P-VALUE
In order to compute the p-value in the replication data sets for
the multivariate association detected in the NFBC1966 data set,
we reduced the multivariate association into an association betw-
een two univariate variables: the genotype combination and the
phenotype combination. The univariate genotype combination was
obtained simply by scaling the genotypes in the replication data
in the same way as with the NFBC1966 data and multiplying the
resulting genotype matrix with Ψ̄ learned with NFBC1966 data. On
the phenotype side, we estimated a univariate variable qi for each
individual i representing the phenotypes by finding the maximum
likelihood value for

yi ∼ NP (qiΓ̄, Σ̄),

where yi is the P -dimensional phenotype of individual i, Γ̄ is
the value of the Γ parameter estimated with NFBC1966 data and
Σ̄ is the estimated covariance of the phenotypes. Thus, qi repre-
sents the value of the latent factor which is the most likely to have
generated the observed phenotypes through the coefficient matrix
Γ̄. Simple linear regression model was then used to check whe-
ther the genotype combination and the phenotype combination were
positively correlated.
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SUPPLEMENTARY FIGURES AND TABLES
Supplementary Figures 1-7 and Tables 1-2 are located in the end of
this document. Supplementary Tables 3-8 can be found in another
file supplementary Tables 3 to 8.pdf.
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LIPC effects on phenotypes
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Fig. 3. The effects of XRCC4, MTHFD2L and LIPC on the lipoprotein traits. The traits are shown on the x-axis. The green/red area shows the 95 per cent
confidence interval for the mean trait value in the group annotated with green/red background in Figure 3 of the main document. For example, individuals in
the green group have lower VLDL trait values than individuals in the red group. One unit on the y-axis denotes one standard deviation. The results are shown
for all three data sets. The solid blue line in the NFBC1966 plot shows the effect as estimated by the model, and it gives the predicted average difference
between the red and the green groups. The values defining the boundaries of the high and low genotype combination groups have been optimized to minimize
the overlap between the confidence intervals using the NFBC1966 data.

8



Gene-metabolome associations

●
●

● ●●●●●●●

●

● ● ●●

●
●
●●● ● ●●●

●

●●●●
●● ●●●●

●●●● ●

●

●●●●●
●

●

●●●●
●
●

●

●●●●●●●●●
●
●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●

●
●●

●
●●●●● ●

●

●
●●●●●● ●●●●● ●●●

●●●●●●●
●●●●

●
●●● ●

●●

●

●●●●●●
●

●●
●●●●●●●●

●●●●●●●
●
●●●

●
●●●●●●●●●●●●

●●●●●● ●●●● ●●●
●●●

●●●

82400000 82500000 82600000 82700000

−
0.

6
−

0.
2

0.
2

0.
6

XRCC4 SNP coefficients

Location (Chr 5)

Ψ
 d

is
tr

ib
ut

io
n

rs189598859

rs191423043

rs188171397 rs181709403

rs115187587chr5:82353023 rs2974442

rs28383106

●●●● ●● ●

●

●● ●●● ● ●● ●
● ● ● ●● ● ●●

●
●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●● ●●

●● ●●● ●● ● ●● ● ● ● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

75000000 75050000 75100000 75150000 75200000

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

MTHFD2L SNP coefficients

Location (Chr 4)

Ψ
 d

is
tr

ib
ut

io
n

rs185567543

●
●
●●

●

●
●
●●●●●●●

●●●●
●
●●
●●●●●●●

●

●

●●●●●●●
●●●●●●●●●

●

●

●●●
●●●●
●●●●
●●●●
●●●●●●●●●●●●●●●

●

●

●●●●●
●
●●●●●

●
●●
●

●●
●●●●

●●●●●●
●
●●
●●●●●●●

●●●●●●
●●●●●●● ●●●

●●
●
●●
●●

●
●
●●●●●●●●●●

●

●

●●●●●

●

●●●
● ●●●●●●●●●●●●●●●●

●
●

● ●
●

● ●

●

●

●

●

●

● ●●● ● ● ● ●

58700000 58750000 58800000 58850000 58900000

−
0.

5
0.

0
0.

5

LIPC SNP coefficients

Location (Chr 15)

Ψ
 d

is
tr

ib
ut

io
n

rs261334

rs113298164

rs111285504

rs190885898

rs1532085rs7165077 rs588136

rs12708454

rs6494018rs139486037

Fig. 4. Marginal confidence intervals for the SNP coefficients for three genes: XRCC4, MTHFD2L and LIPC, derived from posterior samples for the Ψ matrix.
Notice how, when the effect is concentrated on a single SNP, as in MTHFDL, other SNPs, although linked with the lead SNP, get very small weights. The
large standard deviations for rs113298164 and rs111285504 in the results for LIPC are due to the fact that either one but not both of these SNPs is needed to
explain the effect; hence, these two coefficients are strongly negatively correlated with each other. The coefficients shown here differ from those presented in
Supplementary Table 1, because the Ψ matrix represents effects of the SNPs scaled to have unit variance, whereas in Supplementary Table 1 the coefficients
have been scaled back to correspond to the original 0,1,2 SNP encoding.
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Fig. 5. Correlations between different methods. The panels show pairwise comparisons between scores from different methods included in the study. The
names of the methods are shown on top of the columns and on the right of the rows. The correlation between the scores is shown within each panel.
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Fig. 6. A Q-Q plot for PTVE and PTVE-rare scores obtained by the Bayesian reduced rank regression. The panel on the left shows the PTVE scores for all
human genes, plotted against their expected values obtained using analyses of permuted data sets. The panel on the right shows a Q-Q plot for the PTVE-rare
scores. As additional annotation, a hundred genes with the highest scores in the pairwise analysis are drawn using a red cross, whereas all other genes are
drawn using a circle. Notice how genes with high PTVE values can also be seen in the pairwise analysis. On the other hand, genes with the largest PTVE-rare
scores are in general not detectable by the pairwise analysis.
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Fig. 7. Bayesian network representing the structure of the model. Black filled circles denote the observed data. Grey-colored circles represent the variables
related to the noise model. White circles represent the parameters related to the reduced rank regression part of the model. For clarity, the variables related to
the standard regression part of the model are not shown.
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Table 1. Detailed information on the associated SNPs in the significant genes
from Table 1 of the main text. The columns are interpreted as follows: MAF,
the minor allele frequency; Effect, the coefficient of the SNP in the genotype
combination (to be interpreted as relative to one another); contribution, the
cumulative contribution of the SNPs on the total amount of variation explai-
ned by the gene up to 80 per cent. ∗significant replication in only one of the
two replication data sets.

a)

Chr Locus SNP MAF Effect Contribution

5 XRCC4 rs189598859 0.0034 9.3 0.33
rs28360178 0.082 1.5 0.58
rs181709403 0.0011 8.2 0.67
rs191423043 0.00023 16 0.75
rs115640857 0.062 -0.88 0.81

16 SPIRE2∗ rs1110400 0.0027 -18 0.065
chr16:89971087:I 0.0029 36 0.22
rs149408054 0.00034 -17 0.48
rs60958597 0.0032 -470 0.61
rs8059075 0.0032 450 0.92

b)

Chr Locus SNP MAF Effect Contribution

2 DTNB∗ rs744976 0.49 -0.46 0.27
rs75591229 0.052 1.8 0.45
rs142390827 0.0013 -8.2 0.6
chr2:25625422:I 0.37 -0.61 0.72
rs17745484 0.34 -0.56 0.8
rs150371006 0.028 -1.1 0.85

4 MTHFD2L rs185567543 0.026 5.1 0.89

Table 2. Background information about the genes with significant replication.
The table reports genome-wide significant associations located within 1Mb of
the gene, as reported in the Gene database (Wheeler et al., 2007).

Chr Locus Trait P-value (-log10) Distance

5 XRCC4 Mortality 16.7 35 kb
Spondylitis, Ankylosing 9.0 520 kb

4 MTHFD2L Leukocyte Count 16.7 46 kb
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