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1 Methods

1.1 Motif Scores

1.1.1 PWM and site PWM score

MEME uses a PWM to model a motif. This PWM
model is estimated from a positional frequency of the
residues in the aligned identified sites. That is for a
motif of width W , the PWM isf1,a f2,a · · · fW,a

...
...

. . .

f1,z f2,z · · · fW,z


where fi,j is the frequency at position i for 1 ≤ i ≤W
and j ∈ A the set of residues. The site PWM score
for a subsequence of W letters a1a2...aW is defined
as

S(a1a2...aW ) =

W∑
i=1

log

(
fi,ai
f0,ai

)
where f0,a is the background frequency of letter a.
This assumes a 0-order Markov or iid (independent
identically distributed) model for the background,
which is what was used in this paper, but this can be
easily extended to any order of Markov model. We
used our site scanning program SADMAMA (Keich
et al., 2008) to find the best site score in each se-
quence.

1.1.2 MEME’s E-value

The E-value of a motif is the expected number of ran-
dom alignments with the same dimension and with
equal or higher log-likelihood ratio (llr) given the se-
quences have been generated randomly according to
an iid background model.

The information content / relative entropy / llr is
defined as

W∑
i=1

∑
j∈A

nij log

(
fi,j
f0,j

)
, (1)

where nij is the number of occurrences of the j-th
letter in the i-th column of the alignment, and f0,a is
again the background frequency of letter a in our iid
model.

An efficient exact calculation of the E-value is de-
scribed in (Nagarajan et al., 2005) however MEME’s
reported E-value is calculated differently: “The E-
value reported by MEME is actually an approxima-
tion of the E-value of the log likelihood ratio. (An
approximation is used because it is far more efficient
to compute.) The approximation is based on the fact
that the log likelihood ratio of a motif is the sum of
the log likelihood ratios of each column of the motif.
Instead of computing the statistical significance of
this sum (its p-value), MEME computes the p-value
of each column and then computes the significance of
their product” (MEME’s documentation).

Note that computing MEME’s approximation of
the E-value has a runtime complexity which is cubic
in the number of sequences.

1.1.3 Genomic background set

All references in this work to the genomic background
file are to the October 2003 version of the S288C
strain of S. cerevisiae genome which was downloaded
from SGD and further processed by removing all se-
quences with feature type ‘gene’.

1.1.4 Null set generation

For all discriminative scores as well as for estimating
the 3-Gamma p-value we generate a null set of se-
quences in the same manner as Ng and Keich (2008b).
We bin the regions of the background set by A-T
composition. We sample from the bins such that the
dimension (length and number of sequences) of the
null set of sequences is the same as that of the input
set of sequences and the local A-T composition are
similar.
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1.1.5 Mann-Whitney score (MW)

In OOPS mode we use the PWM reported by MEME,
to find the best PWM site score for each input se-
quence as well as for each null sequence. We then ap-
ply the standard MW test to these two sets of scores
allowing for ties. Our MW score is the p-value of this
MW test.

In ZOOPS mode we use the same method as above
except we restrict our attention to the top n best site
scores in the input set of sequences and in the null set
of sequences where n is the number of occurrences of
the motif in the input set as reported by MEME.

1.1.6 Thresholded Mann-Whitney score
(tMW)

For the thresholded MW score, we consider only site
scores which exceed the threshold. In our experi-
ments we set the threshold as the top 0.1% site scores
from all site scores in the genomic background set
(Section 1.1.3). The thresholded MW score is then
the same as the MW score except that it ignores
sequences with site scores less than the threshold.
When in ZOOPS mode the last procedure applies
only to the top n best sites of each set where again n
is the number of sites in the input set as reported by
MEME.

1.1.7 Fisher’s Exact Test score

Since the Fisher exact test relies on counts we need to
set a site defining threshold. We chose this threshold
in the same manner as in tMW above by using the
0.999 quantile of the observed sites scores in the back-
ground set. Let M denote the number of sequences
in the input set, and let m (m0) denote the number
of input (null) sequences that contain a site scoring
at or above the site-defining threshold. The Fisher
Exact Test score is then the probability of observing
at least m scores that exceed the threshold assuming
each such a score is equally likely to come from the
input set and from the null set. That is,

Fisherscore =

min(M,m+m0)∑
k=m

(
M
k

)(
M

m+m0−k
)(

2M
m+m0

) .

In ZOOPS mode we again use only the top n best
site scores from each set.

1.1.8 Minimal Hyper-geometric score
(MHG)

Let Sk (S0k) be the best site score of the kth sequence
in the input (null) set. Let m(t) (m0(t)) be the num-
ber of input (null) set of sequences whose best site
score is higher than or equal to t, that is m(t) =∑M
k=1 I(Sk ≥ t) and m0(t) =

∑M
k=1 I(S0k ≥ t).

The minimal hyper-geometric score is then the
minimum over all t of the p-value of the Fisher Exact
test applied to (M,m(t),m0(t)).

MHGscore = min
t

min(M,m(t)+m0(t))∑
k=m(t)

(
M
k

)(
M

m(t)+m0(t)−k
)(

2M
m(t)+m0(t)

) .

Note that the term MHG was introduced in Eden
et al. (2007), Steinfeld et al. (2008) and Eden et al.
(2009) in a more general setting. Namely, given a bi-
nary vector we can perform a hypergeometric test to
assess the significance of the number of “1”s in the
first k entries of the vector. The minimal hyperge-
ometric score is the minimal p-value over all hyper-
geometric tests, one for each possible value of k. As
such, our definition of the MHG score is a special case
of this definition: our binary vector is a union of the
input (label “1”) and null (label “0”) sequences and
it is sorted according to the score of the optimal motif
match in each sequence.

1.1.9 Sign Score

Using the same notation as in Section 1.1.8 for Sk
and S0k, let n =

∑M
k=1 I(Sk 6= S0k) and x =∑M

k=1 I(Sk > S0k). The sign score is then the prob-
ability of observing at least x input sequence best
site scores larger than the corresponding best null
site scores assuming again the scores are randomly
assigned to both groups. Note that we disregard se-
quences for which Sk = S0k, therefore:

Signscore =

n∑
k=x

(
n

k

)
0.5n.

1.1.10 Minimal Sign Score

The minimal sign score is defined analogously to the
MHG score: we seek the threshold that minimizes
the sign score when applied only to pairs of input-
null sequence scores for which at least one of these
two scores exceeds the threshold. Specifically, with
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n(t) =
∑M
k=1 I(Sk 6= S0k)I(max{Sk, S0k} ≥ t) and

x(t) =
∑M
k=1 I(Sk > max{Sk0, t}) we define

MSignscore = min
t

n(t)∑
k=x(t)

(
n(t)

k

)
0.5n(t).

1.1.11 Selective Scores

We can modify any of the above discriminative scores
by replacing columns of the PWM with the smallest
entropy score with a rigid gap. The entropy or infor-
mation content of column i of the PWM is defined
as 2 +

∑
j∈A fi,j log2 (fi,j). The number of columns

we select (i.e., that are not replaced) is given by
6 + bw−6

3 c. The selective versions of the above dis-
criminative scores are then computed as the origi-
nally defined version, except that each site score is
computed with this gapped PWM.

1.1.12 3-Gamma scores

While we mostly refer to the 3-Gamma p-values in
the context of significance assessment, in Section 1.3
of the main paper we look at the performance of the
3-Gamma p-value when used as a motif score to se-
lect the optimal motif among several candidates. In
this context the 3-Gamma p-value is a point estimate
of the p-value of the relative entropy / llr reported
by MEME. This estimate is based on the assump-
tion that the null distribution of the llr reported by
MEME is well approximated by a 3-Gamma distri-
bution. The latter is not a theoretical result, rather
it is one based on extensive simulations (e.g., Figure
1b in Keich and Ng, 2007).

To compute this 3-Gamma p-value we first sample
using our null sequence generator n (we use n = 50)
null sets of sequences of the same dimensions as the
input set (Section 1.1.4). MEME is then applied to
each of these sets in the exact same way it was applied
to the original input set yielding a sample of n null
scores. Using these null scores we find the maximum
likelihood estimator (MLE) θ̂ = (â, b̂, µ̂). The MLE
is then plugged into the distribution function when
reporting the 3-Gamma p-value of the observed score
s: 1 − Fθ̂(s), where Fθ is the 3-Gamma distribution
function parametrized by θ.

1.2 Null distribution of motif scores
by width

To study how the null distribution of each motif
score varies with the motif width we constructed

histograms of 10,000 empirical null motif scores for
each combination of score function and motif width.
Specifically, we generated 10,000 null sets of a fixed
dimensions: 16 sequences of varying lengths. The
first of those sets was generated by random sampling
of the S. cerevisiae intergenic regions while the re-
maining sets were sampled from the background set
such that local A-T composition is preserved (relative
to the first set) as described in Section 1.1.4. MEME
was then applied eight times in OOPS mode to each
of those null sets with each run specifying a differ-
ent motif width from 6 to 13 inclusive. Each of these
eight MEME reported motifs was then scored by each
of the scores described in Section 1.1. The boxplots
of the observed scores for each width are shown in
Figure 1 in the main paper, and Figures 1, 2 and 3
in this supplementary.

As expected, the null distributions are not uniform
because the motifs used to search the sequences are
optimised over the input set of sequences and hence
the distribution is skewed. These scores are not p-
values: the null hypothesis is never satisfied.

Aside from the Fisher score, we find that the non-
selective versions of the discriminative scores exhibit
a bias for longer motifs. The selective versions of the
scores show substantial reduction of this bias. Inter-
estingly, the (non-selective) Fisher score (Figure 2c)
does not exhibit as significant a bias as the other
methods do especially when considering the longer
motifs.

It should be noted that while it is ideal to have
similar null distributions across different widths, it is
the power of the method to correctly select the best
motif when the null is violated that is ultimately more
important.

1.3 Comparing the power of the motif
scores

To test the retrieval accuracy of our scores, we applied
them to two data sets that were constructed with
sites derived from real motifs. Each test data set was
made of multiple input sets for MEME, each with a
varying number of input sequences and lengths. The
sequences in each input set were sampled indepen-
dently from a genomic background file (Section 1.1.3)
so they were presumably unrelated to one another.
Instances of a motif from our set of transcription fac-
tor motifs were then added to the input sequences
of each set where each input set was implanted us-
ing a single motif. In the OOPS mode every input
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Figure 1: Null distribution of motif scores. The figure shows the boxplots constructed from 10,000 observations
of non-selective and selective versions of the MW and the MHG scores and as well as the E-value and 3-Gamma scores
for each motif width (ranged from 6 to 13, see Section 1.1 for description of scores). The scores were generated by
applying MEME to randomly drawn input set of sequences of a fixed dimensions (number of sequences and their
lengths). See Section 1.2 for details.
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Figure 2: Null distribution of different methods by width. Similar to Figure 1 except for non-selective and
selective versions of threshold MW and Fisher scores.
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Figure 3: Null distribution of different methods by width. Similar to Figure 1 except for non-selective and
selective versions of Sign and minimal Sign scores.
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sequence had a unique instance of the paired motif
whereas in ZOOPS mode each input sequence had a
single instance of the motif or none.

We applied MEME in the appropriate mode to each
of the input sets in each of the two test sets generat-
ing multiple candidate motifs for each input set. Each
of the considered motif scores was then used to select
the best candidate motif for the given input set. That
chosen motif was compared with the implanted mo-
tif and the similarity level between these two motifs
determined whether or not the score function chosen
motif matched the implanted motif.

When running this kind of benchmark one has to
be somewhat careful when choosing the set of motifs:
a small set of motifs might not be sufficiently repre-
sentative of the known motif space but, on the other
hand a larger set might contain many similar motifs
which in turn could bias the analysis. Another poten-
tially confounding factor is the difficulty level of the
motif finding task: if it is too easy all methods will
be successful, and if it is too difficult all will fail. We
next describe our experimental setup in more detail
concentrating on how we dealt with these problems.

1.3.1 Construction of the spanning set of mo-
tifs

To define our set of real motifs we first combined the
motifs from the MacIsaac Yeast dataset (MacIsaac
et al., 2006) and the Uniprobe Mouse dataset (New-
burger and Bulyk, 2009) giving us a total of 510 mo-
tifs. While this set of motifs represents a substantial
section of known transcription factor motifs it con-
tains many very similar motifs. As such similarities
could potentially bias our tests we chose to restrict
our attention to a representative spanning set of 100
motifs from the larger set. Specifically we used hi-
erarchical clustering to construct a tree using motif
similarities as the distance metric. We then chose a
cross section of 100 clusters from this tree and a sin-
gle motif was selected from each cluster. Technically,
the clustering was done using single-linkage agglomer-
ative hierarchical clustering with p-values from Tom-
tom defining the distance between a pair of motifs.
More specifically, we initially consider each motif as
its own cluster. The distance between two clusters is
the smallest Tomtom p-value from all possible motif-
motif pairs between the two clusters. Pairs of clusters
with the smallest distance were repeatedly merged
until we were left with exactly 100 clusters.

A single motif was greedily selected so as to max-
imize the entropy of the set of selected motif width.

That is, if one cluster had more than one motif, then
the motif with the width that had the lowest fre-
quency among the set of currently selected motifs was
chosen (if the cluster contained several motifs with
the same minimal frequency width we randomly chose
one of them). The selected motifs have width ranging
from 6 to 23. These 100 motifs served as templates
to generate sites by using the column frequencies of
each template motif as multinomial probabilities.

1.3.2 Mouse And Yeast with OOPS model
(MAYO) Set

Our OOPS test set was constructed by pairing each
motif from our set of 100 selected motifs with 10 in-
put sets of a varying number of input sequences and
lengths giving us a total of 1000 input sets.

In order for our tests to be as discriminative as pos-
sible it is important to set the the difficulty of the mo-
tif search problem at a level that is neither too high
nor too low. Therefore, having chosen the motif we
iteratively adjusted the difficulty of the motif search
relative to the selected motif by iteratively modifying
the dimensions of the input set as explained next.

For each motif we first generated a “maximal” in-
put set by sampling 100 sequences of length 10,000
from our genomic background set of S. Cerevisiae in-
tergenic regions (Section 1.1.3). This set was then
used as a template for generating 10 more sets of the
same dimensions while preserving the original maxi-
mal set’s local A-T composition (Section 1.1.4). Note
that we sample, not shuffle regions.

We next randomly chose the initial number of se-
quences N0 (uniformly between 10 and 20) and each
sequence length li (uniformly between 100 and 1000)
for i = 1, . . . , N0. These numbers were applied to
each of the 10 input sets so if we denote by Si the ini-
tially drawn maximal sequences of one such set then
our initial version of this input set consisted of the
subsequences Si[1 : li] for i = 1, . . . , N0.

A single instance of the paired motif generated us-
ing a multinomial model was added to each input
sequence in each of the 10 input sets and MEME
was applied in OOPS mode to each of these 10 input
sets using the known paired (implanted) motif width.
Since we ran MEME specifying the implanted motif’s
correct width there was no issue of selecting the best
candidate motif: there was only one candidate motif
per dataset, so none of the scoring functions (includ-
ing the E-value) is involved in selecting the motif.
Each of those 10 reported motifs was then compared
with the paired motif using Tomtom where a p-value
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≤ 0.05 was considered a success. If the success rate
across the 10 sets was 30-70% (inclusive) then we stop
our iterative procedure having achieved our target
difficulty level. Otherwise, we make the motif search
either easier or more difficult according to whether
the success rate was below 30% or above 70% respec-
tively.

Technically we adjust the difficulty level by either
simultaneously changing the number of sequences in
each of our 10 input sets or by simultaneously modi-
fying the length of all the sequences in each set. More
specifically, we can make the motif search harder by
decreasing the number of sequences and easier by
increasing the number of sequences. Similarly, the
search becomes more difficult as the sequence lengths
increase. Each such change is applied simultaneously
to all 10 input sets so that these 10 sets always have
the same dimensions and we alternate between chang-
ing the number of sequences in the set and chang-
ing the sequences lengths. Specifically, we alternately
add or drop a single sequence from each input set or
extend/clip each of the sequences in each input set
by 10%. We naturally make sure a clipped sequence
still carries its implanted site.

MEME is applied to the modified set and this iter-
ative process is repeated until we either achieve the
desired difficulty level, as described above, or the sets
reach their maximal dimensions. Either way, one of
the ten sets is then selected as part of the test set. We
repeat this process 10 times for each of our 100 mo-
tifs yielding a total of 1000 OOPS sets. The median
number of sequences per set was 19 and the median
of the set-averaged sequence length was 576.

1.3.3 Mouse And Yeast with ZOOPS model
(MAYZ) Set

We similarly generated a data set of 1000 input sets
using the ZOOPS model. The only differences from
the procedure described above for the OOPS model
is that:

• We do not implant a site in each sequence of
the 10 sets that are used in finding the desired
dimension. Rather, a fixed site rate (chosen uni-
formly between 50-80%) is chosen for all 10 input
sets and that rate determines the number of se-
quences that will carry a single implanted site in
each input set. The remaining sequences in each
input set do not contain any site.

• Our iterative scheme included a step that in-
creased the ZOOPS factor by 0.1 (to make the

motif finding problem easier) or decreased it by
0.1 (to make it harder) subject to the constraint
that the ZOOPS factor should stay between 0.5
to 0.8.

The median number of sequences per input set for
this MAYZ set was 25 and the median of the set-
averaged sequence length was 526.

1.3.4 Motif search analysis: simulated set

For each set in the MAYO set, we used MEME in
OOPS mode to search for a single motif of a fixed
width from 6 to 13. This approach assures that
MEME’s E-value metric does not influence the mo-
tif it reports. For each reported PWM we assigned
a motif score using one of the methods described in
Section 1.1. The highest scoring candidate motif was
selected as the optimal motif (among the 8 indepen-
dent runs of MEME). This motif was compared with
the original paired motif that was used to generate
the set’s binding sites using Tomtom. If the Tom-
tom p-value was less than or equal to 0.05, we labeled
this search as a success. Table 1a shows the success
rate of each method when applied to the MAYO set.

The same tests were repeated with the MAYZ set
but with MEME applied in ZOOPS mode. However,
when in ZOOPS mode, MEME internally uses the
E-value to choose the best candidate motif among
those using different number of occurrences of the
motif. Therefore, we replaced this internal E-value
selection with fixing the number of sites (-nsites)
per width. Following MEME’s own strategy the val-
ues of -nsites we considered for each motif width
were 2k for k ∈ {1, 2, . . . , blog2Nc} ∪ {log2N} where
N is the number of sequences in the input set.

For each MAYZ input set the selected motif was
chosen as the highest scoring one among all candidate
motifs generated using the different combinations of
width and number of sites. A summary of this test is
given in Table 3a. In Table 4 we give a breakdown of
the success rate for each fixed motif width by select-
ing the best motif among candidate motifs generated
when varying only the -nsites parameter.

Finally, we looked at the power of the different mo-
tif scores when the model is misspecified (Table 2).
Specifically, we ran the test on the MAYZ but using
MEME in OOPS mode. Of course in this case we
only varied the motif width to generate the multiple
candidates for each input set.
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1.3.5 Statistical analysis of the difference in
success rates

For all those tests, we assessed whether the observed
differences in the number of successes are statistically
significant using a two-sided sign test. Specifically,
for each pair of motif scores we applied the sign test to
compare the number of sets where only one of the two
scores was successful in recovering the paired tem-
plate motif. Under the null hypothesis each such set
is equally likely to be discovered by either one of the
two considered scores. Therefore the underlying null
distribution is binomial and a p-value can be readily
assigned.

1.4 3-parameter Gamma fit for motif
scores

We previously showed that the 3-parameter Gamma
seems to offer a good fit for the score of the best mo-
tif reported by the finder for several combinations of
finders, scoring functions and null models. Here we
settled for a single test based on 100,000 null sam-
pled minimal selective MHG and minimal selective
MW scores which were generated as follows. We first
generated 100,000 null sets of the same dimension (16
sequences of various lengths) as described in Section
1.2. MEME was then applied eight times in OOPS
mode to each of those null sets specifying a different
motif width from 6 to 13 with every run. The selec-
tive MW and MHG scores were computed for each
of the eight reported motifs and the best (minimal)
one across all widths was taken as the corresponding
minimal selective MW/MHG null score.

Figure 4 shows the probability plot of the 100,000
null sampled minimal selective MW scores1 against
its MLE 3-Gamma fit. Figure 3 in the main paper
provides a similar picture of the null distribution of
the minimal selective MHG score. In both figures we
added as a reference the MLE Normal fit to the data.
In both figures we see that the Normal fit deviates
considerably from the observations at the tails while
the 3-Gamma fit stays fairly close.

1minus log of minimum selective scores to be exact
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Figure 4: Probability plot of the null selective
MW score with normal and 3-Gamma parametric
fits. This probability plot compares the empirical null
distribution of the selective MW score with the optimal
normal as well as 3-Gamma parametric fits. The empiri-
cal distribution was generated using 100,000 observations
and the parametric fits were estimated using maximum
likelihood. See Section 1.4 for details.

9



3G E-value MW tMW Fisher MHG Sign MSign

599 495
Non-selective 558 558 507 546 534 533

Selective 617 584 548 608 580 580

(a) Success in selecting the best candidate motif.

3G E-value MW tMW Fisher MHG Sign MSign

3G < 0.0001− 0.0055− 0.0070− < 0.0001− 0.0004− < 0.0001− < 0.0001−

E-value < 0.0001+ < 0.0001+ < 0.0001+ 0.4985 0.0005+ 0.0115+ 0.0124+

MW 0.0055+ < 0.0001 − 1.0000 0.0007− 0.4175 0.1002 0.0661

tMW 0.0070+ < 0.0001− 1.0000 0.0022− 0.4344 0.1019 0.0725

Fisher < 0.0001+ 0.4985 0.0007+ 0.0022+ 0.0185+ 0.1141 0.1166

MHG 0.0004+ 0.0005− 0.4175 0.4344 0.0185− 0.4500 0.3853

Sign < 0.0001+ 0.0115− 0.1002 0.1019 0.1141 0.4500 1.0000

MSign < 0.0001+ 0.0124− 0.0661 0.0725 0.1166 0.3853 1.0000

s-MW 0.2174 < 0.0001− < 0.0001− < 0.0001− < 0.0001− < 0.0001− < 0.0001− < 0.0001−

s-tMW 0.3463 < 0.0001− 0.0828 0.0887 < 0.0001− 0.0128− 0.0011− 0.0005−

s-Fisher 0.0005+ 0.0009− 0.5459 0.5385 0.0098− 0.9490 0.3995 0.3611

s-MHG 0.5565 < 0.0001− 0.0003− 0.0006− < 0.0001− < 0.0001− < 0.0001− < 0.0001−

s-Sign 0.2064 < 0.0001− 0.1274 0.1314 < 0.0001− 0.0176− 0.0015− 0.0007−

s-MSign 0.2086 < 0.0001− 0.1254 0.1294 < 0.0001− 0.0225− 0.0016− 0.0004−

s-MW s-tMW s-Fisher s-MHG s-Sign s-MSign

3G 0.2174 0.3463 0.0005− 0.5565 0.2064 0.2086

E-value < 0.0001+ < 0.0001+ 0.0009+ < 0.0001+ < 0.0001+ < 0.0001+

MW < 0.0001+ 0.0828 0.5459 0.0003+ 0.1274 0.1254

tMW < 0.0001+ 0.0887 0.5385 0.0006+ 0.1314 0.1294

Fisher < 0.0001+ < 0.0001+ 0.0098+ < 0.0001+ < 0.0001+ < 0.0001+

MHG < 0.0001+ 0.0128+ 0.9490 < 0.0001+ 0.0176+ 0.0225+

Sign < 0.0001+ 0.0011+ 0.3995 < 0.0001+ 0.0015+ 0.0016+

MSign < 0.0001+ 0.0005+ 0.3611 < 0.0001+ 0.0007+ 0.0004+

s-MW 0.0007− < 0.0001− 0.5455 0.0052− 0.0035−

s-tMW 0.0007+ 0.0254− 0.1019 0.8231 0.8126

s-Fisher < 0.0001+ 0.0254+ < 0.0001+ 0.0266+ 0.0347+

s-MHG 0.5455 0.1019 < 0.0001− 0.0392− 0.0314−

s-Sign 0.0052+ 0.8231 0.0266− 0.0392+ 1.0000

s-MSign 0.0035+ 0.8126 0.0347− 0.0314+ 1.0000

(b) Significance of difference in success rate.

Table 1: MAYO set in OOPS mode. Panel a shows the number of successes (out of 1000) of each of the scoring
functions described in Section 1 when applied to the MAYO set (see Section 1.3 for the construction of the data set).
Panel b shows the p-value of the sign test comparing the success rate of the corresponding pair of methods. If the
test was significantly better for the column score compared to the row score, there is + next to the sign test p-value
while if it was significantly worse then there is − sign (we use 5% significance level). See Section 1 for details about
each motif score and Section 1.3.4 for the method. The selective version of each score is preceded by the prefix “s-”
(e.g. s-MW is the selective version of MW score). If we consistently selected the MEME reported motif of width 6,
we would succeed in 503/1000 input sets.
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3G E-value MW tMW Fisher MHG Sign MSign

476 376
Non-selective 436 394 392 402 399 414

Selective 491 456 457 484 474 465

(a) Success in selecting the best candidate motif.

3G E-value MW tMW Fisher MHG Sign MSign

3G < 0.0001− 0.0084− < 0.0001− < 0.0001− < 0.0001− < 0.0001− 0.0001−

E-value < 0.0001+ < 0.0001+ 0.2643 0.3184 0.0798 0.1093 0.0141+

MW 0.0084+ < 0.0001− 0.0003− 0.0010− 0.0098− 0.0052− 0.1028

tMW < 0.0001+ 0.2643 0.0003+ 0.9486 0.6098 0.7676 0.1352

Fisher < 0.0001+ 0.3184 0.0010+ 0.9486 0.5139 0.6825 0.1623

MHG < 0.0001+ 0.0798 0.0098+ 0.6098 0.5139 0.8819 0.3904

Sign < 0.0001+ 0.1093 0.0052+ 0.7676 0.6825 0.8819 0.2383

MSign 0.0001+ 0.0141− 0.1028 0.1352 0.1623 0.3904 0.2383

s-MW 0.3059 < 0.0001− < 0.0001− < 0.0001− < 0.0001− < 0.0001− < 0.0001− < 0.0001−

s-tMW 0.1897 < 0.0001− 0.1588 < 0.0001− 0.0001− 0.0003− 0.0001− 0.0044−

s-Fisher 0.2064 < 0.0001− 0.1477 < 0.0001− < 0.0001− 0.0001− 0.0001− 0.0041−

s-MHG 0.6098 < 0.0001− 0.0004− < 0.0001− < 0.0001− < 0.0001− < 0.0001− < 0.0001−

s-Sign 0.9458 < 0.0001− 0.0059− < 0.0001− < 0.0001 < 0.0001− < 0.0001− < 0.0001−

s-MSign 0.4829 < 0.0001− 0.0371− < 0.0001− < 0.0001− < 0.0001− < 0.0001− 0.0001−

s-MW s-tMW s-Fisher s-MHG s-Sign s-MSign

3G 0.3059 0.1897 0.2064 0.6098 0.9458 0.4829

E-value < 0.0001+ < 0.0001+ < 0.0001+ < 0.0001+ < 0.0001+ < 0.0001+

MW < 0.0001+ 0.1588 0.1477 0.0004+ 0.0059+ 0.0371+

t-MW < 0.0001+ < 0.0001+ < 0.0001+ < 0.0001+ < 0.0001+ < 0.0001+

Fisher < 0.0001+ 0.0001+ < 0.0001+ < 0.0001+ < 0.0001+ < 0.0001+

MHG < 0.0001+ 0.0003+ 0.0001+ < 0.0001+ < 0.0001+ < 0.0001+

Sign < 0.0001+ 0.0001+ 0.0001+ < 0.0001+ < 0.0001+ < 0.0001+

MSign < 0.0001+ 0.0044+ 0.0041+ < 0.0001+ < 0.0001+ 0.0001+

s-MW 0.0019− 0.0042− 0.6232 0.2100 0.0464−

s-tMW 0.0019+ 1.0000 0.0415+ 0.1921 0.5285

s-Fisher 0.0042+ 1.0000 0.0465+ 0.2567 0.6079

s-MHG 0.6232 0.0415− 0.0465− 0.4713 0.1427

s-Sign 0.2100 0.1921 0.2567 0.4713 0.4478

s-MSign 0.0464+ 0.5285 0.6079 0.1427 0.4478

(b) Significance of difference in success rate.

Table 2: MAYZ set in OOPS mode. The success rate of each method applied to the MAYZ set (1000 sets, see
Section 1.3 for details) is listed in Table 2a. In this test the model is misspecified: the MAYZ set was constructed
using the ZOOPS model but MEME was applied in OOPS mode. Table 2b shows the p-value of the sign test applied
to evaluate the significance of the differences in the success rates between every pair of scores. The method keys are
as described as in Table 1.
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E-value MW tMW Fisher MHG Sign MSign

368
Non-selective 497 513 376 486 433 548

Selective 586 580 452 615 549 594

(a) Success in selecting the best candidate motif.

E-value MW tMW Fisher MHG Sign MSign

E-value < 0.0001+ < 0.0001+ 0.6779 < 0.0001+ 0.0003+ < 0.0001+

MW < 0.0001− 0.2471 < 0.0001− 0.5032 < 0.0001− 0.0026+

tMW < 0.0001− 0.2471 < 0.0001− 0.1154 < 0.0001− 0.0416+

Fisher 0.6779 < 0.0001+ < 0.0001+ < 0.0001+ 0.0004+ < 0.0001+

MHG < 0.0001− 0.5032 0.1154 < 0.0001 − 0.0006− 0.0002+

Sign 0.0003− < 0.0001+ < 0.0001+ 0.0004− 0.0006+ < 0.0001+

MSign < 0.0001− 0.0026− 0.0416− < 0.0001− 0.0002− < 0.0001−

s-MW < 0.0001− < 0.0001− < 0.0001− < 0.0001− < 0.0001− < 0.0001− 0.0319−

s tMW < 0.0001− < 0.0001− < 0.0001− < 0.0001− < 0.0001− < 0.0001− 0.0801

s-Fisher < 0.0001− 0.0063+ 0.0006+ < 0.0001− 0.0574 0.2812 < 0.0001+

s-MHG < 0.0001− < 0.0001− < 0.0001− < 0.0001− < 0.0001− < 0.0001− 0.0001−

s-Sign < 0.0001− 0.0026− 0.0410− < 0.0001− 0.0002− < 0.0001− 1.0000

s-MSign < 0.0001− < 0.0001− < 0.0001− < 0.0001− < 0.0001− < 0.0001− 0.0050−

s-MW s-tMW s-Fisher s-MHG s-Sign s-MSign

E-value < 0.0001+ < 0.0001+ < 0.0001+ < 0.0001+ < 0.0001+ < 0.0001+

MW < 0.0001+ < 0.0001+ 0.0063− < 0.0001+ 0.0026+ < 0.0001+

tMW < 0.0001+ < 0.0001+ 0.0006− < 0.0001+ 0.0410+ < 0.0001+

Fisher < 0.0001+ < 0.0001+ < 0.0001+ < 0.0001+ < 0.0001+ < 0.0001+

MHG < 0.0001+ < 0.0001+ 0.0574 < 0.0001+ 0.0002+ < 0.0001+

Sign < 0.0001+ < 0.0001+ 0.2812 < 0.0001+ < 0.0001+ < 0.0001+

MSign 0.0319+ 0.0801 < 0.0001− 0.0001+ 1.0000 0.0050+

s-MW 0.6587 < 0.0001− 0.0734 0.0257− 0.6643

s-tMW 0.6587 < 0.0001− 0.0373− 0.0682 0.4219

s-Fisher < 0.0001+ < 0.0001+ < 0.0001+ < 0.0001+ < 0.0001+

s-MHG 0.0734 0.0373− < 0.0001− < 0.0001− 0.2174

s-Sign 0.0257+ 0.0682 < 0.0001− < 0.0001+ 0.0026+

s-MSign 0.6643 0.4219 < 0.0001− 0.2174 0.0026−

(b) Significance of difference in success rate.

Table 3: MAYZ set in ZOOPS mode. Similar to Table 2 except here the model is correctly specified: MEME
was applied in ZOOPS mode. The best candidate motifs were selected among candidate motifs generated by varying
the motif width and -nsites (the number of site bearing sequences).
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Width E-value MW tMW Fisher MHG Sign MSign

6 377
Non-selective 539 503 460 534 523 510

Selective Same as above.

7 402
Non-selective 542 490 452 535 531 524

Selective 532 488 455 536 515 505

8 381
Non-selective 543 516 405 515 517 547

Selective 514 480 416 540 546 516

9 387
Non-selective 504 507 356 505 485 529

Selective 519 514 367 543 546 537

10 359
Non-selective 465 486 339 471 445 506

Selective 518 507 361 534 529 533

11 342
Non-selective 409 439 284 401 389 466

Selective 496 502 308 519 484 516

12 307
Non-selective 344 387 250 351 323 399

Selective 428 442 257 432 411 467

13 294
Non-selective 308 336 230 314 303 349

Selective 403 419 252 416 414 446

Table 4: MAYZ set in ZOOPS mode per width. Similar to Table 3 except here for each fixed value of MEME’s
motif width parameter (6–13) we vary MEME’s number of sites parameter -nsites. We then select the best candidate
motif for that specified motif width using the different motif scoring functions. Note that the actual width of the
implanted motif (6–23) is unknown to MEME and is only used by Tomtom in the evaluation step. What is measured
here is the ability of each scoring function to pick the best motif when the -nsites is varied–a task that is performed
in MEME using the E-value.
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Figure 5: Two-tiered vs. E-value analysis in
OOPS mode. For each set, we compare the best candi-
date motif (from width 6 to 13) as selected by the specified
method to the implanted motif using the corresponding
Tomtom p-value. If the Tomtom p-value is less than or
equal to 0.05, we label the motif as positive otherwise as
negative. Varying the significance threshold we plot the
number of positive motifs which are deemed significant
(TP) vs. the number of negative motifs that are called sig-
nificant at that level (FP). The significance is determined
either by the E-value or by the 3-Gamma point estimate
of the p-value (3GMW, 3GMHG). Note that as the op-
timal motif is selected using different methods: E-value,
selective MHG (3GMHG), selective MW (3GMW), the
positive/negative label assigned to each set motif might
vary with the method. Hence we plot FP vs. TP counts
rather than the usual ROC curve. Keep in mind that
the significance thresholds are different for the different
scores hence while we sort our results according to the re-
ported significance level (E-value or 3-Gamma estimated
p-value) we normalize the graphs according to the number
of FPs.

Data set Threshold
3GMW 3GMHG E-value

TP FP TP FP TP FP

MAYO 0.001 184 2 179 4 178 76

0.01 261 10 241 11 192 92

0.05 322 28 302 32 209 101

MAYZ 0.001 114 2 106 2 94 165

0.01 185 9 190 5 110 190

0.05 267 36 274 27 123 207

Table 5: The TP and FP counts in Figure 4 in the
main paper and Figure 5 for some commonly used
thresholds. For each threshold, the number of TP and
FP motifs reported by the corresponding method is given.
Specifically, the number of TPs is the number of sets with
label P with score lower or equal to the threshold and the
number of FPs is the number of sets with label N with
score lower or equal to the threshold.

Data set Score Selective score 3G Significance

MAYO MW 0.747 0.788

MHG 0.742 0.792

MAYZ MW 0.718 0.743

MHG 0.718 0.750

Table 6: aROC of Figure 6. The aROC of the selective
MW and 3GMW as well as the aROC of selective MHG
and 3GMHG are given. See Figure 6 for description of
method.

Data set E-value 3GMW 3GMHG

MAYO 0.682 0.815 0.820

MAYZ 0.530 0.839 0.821

Table 7: aROC of Figure 7. The aROC of the dif-
ferent motif scoring methods are given. Here the best
motif is always selected using the E-value and the overall
motif score is assessed by one of the 3 specified methods.
Therefore these aROCs are really a measurement of the
score calibration.
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(a) s-MW: MAYO set in OOPS mode
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(b) s-MW: MAYZ set in ZOOPS mode
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(c) s-MHG: MAYO set in OOPS mode
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(d) s-MHG: MAYZ set in ZOOPS mode

Figure 6: Assessing the calibration of the selective discriminative scores. In plots (a) and (b) we compare
the classification performance of the selective MW score on its own (s-MW) with its performance when it serves as
the basis of our two-tiered analysis (3GMW) in which case the overall motif score is the 3-Gamma p-value. The
data sets used for these two plots are described in detail in Section 1.3. Note that only the score of the of the
selected motif rather than the motif itself can change between these two methods hence these are standard ROC
curves. In particular, the classification performance is essentially a measure of the calibration of these two scores. It
is interesting to note that the s-MW score is fairly well calibrated as it is: the difference between these two classifiers
is rather small, e.g., the aROCs in (a) are 0.747 (s-MW) and 0.788 (3GMW) (see Table 6). Plots (c) and (d) are the
same except for the selective MHG score.
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(a) MAYO set in OOPS mode
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(b) MAYZ set in ZOOPS mode (the number of site occur-
rences were chosen internally by MEME using the E-value)

Figure 7: E-value vs. two-tiered calibration. The positive and negative labels are the same as described in
Figure 5. In all cases the best candidate motif was selected by using the E-value. The two tiered analysis is used here
only to assign an alternative statistical significance to the motif selected using the E-value. Since the motif is selected
by the the E-value one could expect that sorting the motifs from different sets according to their E-values should
yield optimal results. The figures provide a very different picture showing the E-value is not well calibrated when
compared to the 3-Gamma significance. The construction of the data set is described in Section 1.3. See Table 7 for
the associated aROCs.
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2 Analysis on real data set

2.1 Harbison-Narlikar test set

The “Harbison-Nalikar” test set we use is the same
156 sets of sequences from 80 transcription factors
(TFs) used in Ng and Keich (2008a) and Narlikar
et al. (2007). Specifically this test set was compiled
from 310 ChIP-chip experiments of 203 yeast tran-
scription factors in Harbison et al. (2004). The con-
sensus sequence of the 80 TFs were obtained from
Harbison et al. (2004) or MacIsaac et al. (2006).
These consensus sequence was mapped to a PWM
using the same method as Harbison et al. (2004).

2.2 Performance on real data set

We compared the performance of five of our motif
scores (MW, MHG, selective-MW/MHG, E-value) in
choosing the optimal motif among several candidates
generated by MEME’s EM process applied to the
Harbison-Narlikar set. Our analysis here followed the
one described in Section 1.3.4: for each set, we used
MEME in OOPS mode to search for a motif of a fixed
width from 6 to 13. We selected the best candidate
motif using either the E-value, MW, MHG, selective
MW or selective MHG score. This motif was com-
pared to the consensus PWM (see above) using Tom-
tom. Again we used a cutoff of 0.05 to determine if
the search yielded a correct identification.

E-value MW MHG

42
Non-selective 48 48

Selective 54 53

(a) Success in selecting the best candidate motif.

E-value MW MHG s-MW s-MHG

E-value 0.2632 0.2379 0.0169 0.0266

MW 0.2632 1.0000 0.1460 0.2668

MHG 0.2379 1.0000 0.1094 0.2266

s-MW 0.0169 0.1460 0.1094 1.0000

s-MHG 0.0266 0.2668 0.2266 1.0000

(b) Significance of difference in success rate.

Table 8: Harbison-Narlikar set in OOPS mode.
Table (a) shows the success rate of each method applied
to the Harbison-Narlikar set (156 sets, see Section 1.3 for
details). Table (b) shows the significance of the difference
between the success rate of a pair of methods. For this
test, MEME was applied in OOPS mode.
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Figure 8: Two-tiered vs. E-value analysis for
Harbison-Narlikar test set. Similar to Figure 5 ex-
cept using Harbison-Narlikar test set and here the plot of
TP vs. FP for 3GMHG and E-value are only shown.

The two-tiered analysis was performed only with
the selective MHG score (3GMHG) using 50 null sets
to assign the 3-Gamma p-value.

Threshold
3GMHG E-value

TP FP TP FP

0.001 30 4 28 34

0.01 35 7 29 39

0.05 40 15 30 41

Table 9: The TP and FP counts in Figure 8 for
some commonly used thresholds. The above table is
similar to Table 5 except this is for the Harbison-Narlikar
test set.
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