
molBLOCKS– User’s Guide

Dario Ghersi

Copyright c� 2014 Dario Ghersi

HTTP://COMPBIO.CS.PRINCETON.EDU/MOLBLOCKS

January 2014

Disclaimer and Acknowledgements
These programs are distributed in the hope that they will be useful, but without any warranty;
without even the implied warranty of merchantability or fitness for any purpose. The entire
risk as to the quality and performance of the program is with the user.

The molBLOCKS suite was developed by Dario Ghersi in Mona Singh’s lab at the Lewis-Sigler
Institute for Integrative Genomics, Princeton University.

Email addresses:
Dario Ghersi: dario.ghersi@princeton.edu

Contents

1 Introduction . 5

1.1 Overview of molBLOCKS 5

1.2 Representing small molecules with the SMILES notation 6
1.2.1 Atoms and bonds . 6
1.2.2 Branches and cycles . 7
1.2.3 Stereochemistry . 7
1.2.4 Canonical form . 8

1.3 Defining rules with SMARTS 8
1.3.1 Specifying atoms . 9
1.3.2 Specifying bonds . 9
1.3.3 Logical operators . 9
1.3.4 Examples of SMARTS patterns . 9

2 Installing the molBLOCKS suite . 11

2.1 Compiling molBLOCKS in Linux and Mac OS X 11

2.2 Running molBLOCKS in a Virtual Machine 12

3 The fragment program . 13

3.1 Using the fragment program 13
3.1.1 Input files . 13
3.1.2 Parameters . 14
3.1.3 Output . 15

3.2 Under the hood 16

4

4 The analyze program . 17

4.1 Using analyze 17
4.1.1 Input files . 17
4.1.2 Parameters . 17
4.1.3 Output . 18

4.2 A tutorial on fragment clustering and enrichment analysis 19

4.3 Under the hood 20
4.3.1 Fragment clustering . 20
4.3.2 Enrichment analysis . 21

Bibliography . 23

Overview of molBLOCKS
Representing small molecules with the
SMILES notation

Atoms and bonds
Branches and cycles
Stereochemistry
Canonical form

Defining rules with SMARTS
Specifying atoms
Specifying bonds
Logical operators
Examples of SMARTS patterns

1 — Introduction

1.1 Overview of molBLOCKS

The molBLOCKS suite allows users to break down small molecules into chemically meaningful
fragments and to analyze the resulting fragment distribution (see Figure 1.1). molBLOCKS consists of
two programs: fragment and analyze.

The fragment program reads user-defined rules to specify the bonds to break, or uses the default
set of rules based on the RECAP algorithm [Lew+98]. Then, the program applies these rules to
fragment the molecules, and exhaustively generates all fragments above a minimum size that is
defined by the user.

The analyze program provides users with the option of analyzing the fragments yielded by
fragment. Besides collecting statistics on the frequency of each fragment, the analyze program also
clusters fragments with a user-defined similarity threshold that is based on a fingerprint representation
of the fragments. The program then selects the most representative fragment from a cluster as the
fragment with the highest average similarity to every other fragment in its cluster. Another feature
provided by the analyze program is enrichment analysis. Let us suppose we are dealing with
a library of small molecules, a subset of which has a specific property of interest. We can then
fragment the whole library with the fragment program, and determine which (if any) fragments are
significantly enriched in the set with the property of interest. The enrichment analysis can also be
carried out at the level of clusters.

The following sections will briefly describe the SMILES and SMARTS formats used by
molBLOCKS to define the molecules and the bonds to break. More information about SMILES
and SMARTS can be found on the DAYLIGHT website. 1 2

1http://www.daylight.com/dayhtml/doc/theory/theory.smiles.html
2http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html

6 Introduction

!small!molecules!(SMILES)!

[C@@H]12N(C(=C(CS1)Cl)C(=O)O)C(=O)
[C@H]2NC(=O)[C@@H](c1ccccc1)N!cefaclor!

[C@@H]12N(C(=C(CS1)CSc1nnc(s1)C)C(=O)O)C(=
O)[C@H]2NC(=O)Cn1cnnn1!cefazolin!

breakable!bonds!(SMARTS)!

[$(C=!@O)]!@[$([O;+0])]!ester!
[O!$(O[#6]~[!#1!#6])]([#6])!@[#6]!!!!!!!ether!
...!

fragment	

analyze	

• !Get!fragment!frequency!
• !Cluster!fragments!by!similarity!
• !Enrichment!analysis!on!fragments!
• !Enrichment!analysis!on!clusters!

Figure 1.1: Flowchart for the molBLOCKS suite. The fragment program reads user-defined rules
that specify the bonds to break, and then applies these rules extensively to fragment the molecules.
As an optional second step – carried out with the analyze program – the user can perform a variety
of analyses on these fragments, such as cluster or enrichment analysis.

1.2 Representing small molecules with the SMILES notation
molBLOCKS uses the SMILES (Simplified Molecular Input Line Entry System) [Wei88] nota-
tion to represent small molecules. Most chemoinformatics and bioinformatics databases (e.g.,
DrugBank [Wis+06], and the PDB [Ber+00]) provide SMILES codes for small molecules. The
openbabel program 3 easily converts small molecules from other formats (e.g., MOL, PDB, and
SDF) into SMILES strings.

1.2.1 Atoms and bonds
In SMILES, atoms are specified by their chemical symbols, enclosed in square brackets. For atoms
belonging to the organic subset (B, C, N, O, P, S, F, Cl, Br, and I) the square brackets are usually
omitted. Atoms in aromatic rings are written lower-case (e.g., an aromatic carbon would be c,

3http://openbabel.org

1.2 Representing small molecules with the SMILES notation 7

whereas an aliphatic carbon would be written as C). Hydrogen atoms are implied and need not be
explicitly notated, but are required in the presence of square brackets (e.g., [NH3]).

Single bonds are represented by a dash, -, but are usually omitted. Double and triple bonds are
represented by the = and # symbols, respectively. For example, a molecule like ethanol – which
contains no double or triple bonds – could be represented simply as CCO (Figure 1.2A), whereas
ethylacetylene – which contains one triple bond – can be written as C#CCC (Figure 1.2B).

1.2.2 Branches and cycles

Branches are enclosed in parentheses, and connect to the left. For example, isopropyl alcohol can
be written as CC(O)C (Figure 1.2C). Cyclic structures are specified by adding the same label to
atoms that are non-adjacent in the SMILES string, but are connected in the molecule. For example,
cyclohexane can be written as C1CCCCC1 (Figure 1.2D).

1.2.3 Stereochemistry

E and Z isomerism is described with the / and \ characters. For example, cys-2-butene would be
represented as C/C=C\C (Figure 1.2E), whereas trans-2-butene (with the methyl groups on the
opposite side of the double bond) would be C/C=C/C (Figure 1.2F). The @ and @@ characters are
used to specify the chirality of a tetrahedral carbon. The @ and @@ characters indicate that the
substituents appear clockwise and anti-clockwise, respectively, when looking from the first neighbor
of the chiral atom listed in the SMILES string.

Figure 1.2: Examples of simple small molecules, represented as SMILES strings.

8 Introduction

1.2.4 Canonical form

In general, more than one SMILES string can correspond to the same small molecule. For example,
these are all correct SMILES strings that represent ethanol:

• CCO
• OCC
• C(O)C
• [CH3][CH2][OH]

fragment accepts any SMILES string, as long as it is correct. The output, however, is in canonical
form. In other words, identical fragments will be output as the same SMILES string, even if they
had been written differently in the molecules they came from. The canonicalization algorithm is part
of the Open Babel library [OBo+11] used by fragment. Figure 1.3 shows some examples of small
molecules of biological and pharmacological interest, represented as SMILES strings.

 aspirin
O=C(Oc1ccccc1C(=O)O)C

 glucose
OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O

 caffeine
CN1C(=O)C2N(C)C=NC2N(C1=O)C

 lysine
C(CCN)CC(C(=O)O)N

O

OO

HO

CH3

HO

O

OH

OH

HO

HO

CH3

N

O

N

H3C

N N O

CH3

H2N
O

OH

NH2

HO

O

CH3

CH3

CH3 CH3

CH3

CH3

H3C

H3C

 vitamin E (alpha-tocopherol)
Oc2c(c(c1O[C@](CCc1c2C)(C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)C)C

Figure 1.3: Examples of small molecules of biological and pharmacological interest, repre-
sented as SMILES strings.

1.3 Defining rules with SMARTS

The fragment program requires a set of rules that specifies the bonds that can be cleaved. These rules
have to be encoded as SMARTS (SMiles ARbitrary Target Specification) patterns that specify the
two atoms that define the bond to be cleaved. SMARTS is a format created by Daylight Chemical
Information Systems, Inc. for matching substructures and properties, and the rules are an
extension of the SMILES notation (all SMILES symbols are valid in SMARTS).

1.3 Defining rules with SMARTS 9

1.3.1 Specifying atoms
Atoms can be specified as in SMILES strings, or by their atomic number preceded by the # symbol
(e.g., #6 would match any carbon, either aliphatic or aromatic), or by their atomic mass, within <> .
The wildcard * represents any atom, while the a and A symbols represent aromatic and aliphatic
atoms, respectively.

1.3.2 Specifying bonds
Bonds are specified as in SMILES strings, with some additional symbols. The ˜ symbol indicates
any bond, the : symbol represents an aromatic bond, while the @ symbol indicates any ring bond.

1.3.3 Logical operators
SMARTS allows the use of logical operators to combine expressions. The ! symbol negates
an expression, the & and ; symbols represent high-precedence and low-precedence boolean and
operators, respectively. The boolean or operator is represented by a comma (,).

1.3.4 Examples of SMARTS patterns
Some examples of SMARTS pattern used to encode the default RECAP rules follow:

[c]!@[c] aromatic carbon – aromatic carbon bond

[#6]=!@[#6] olefin bond

[$(C=!@O)]!@[$([O;+0])] ester bond

Note that the !@ symbols separate the two atoms that define the bond to cleave, and prevent bond
cleavage from occurring in a ring. The last example introduces two new symbols: the + symbol, that
specifies the formal charge of an atom, and the $ symbol, which is used to define recursive SMARTS
expressions.

Compiling molBLOCKS in Linux and
Mac OS X
Running molBLOCKS in a Virtual Machine

2 — Installing the molBLOCKS suite

molBLOCKS has only two external dependencies: the boost library [SLL02] and the openbabel
library [OBo+11]. Both are provided in the download package. The boost library is header based,
and requires no installation, whereas openbabel needs to be compiled and installed first.

2.1 Compiling molBLOCKS in Linux and Mac OS X
In order to compile and install openbabel, make sure your system is capable of building C/C++
programs. Compilers can be readily obtained for both Mac OS X (Xcode development environment)
and Linux. Open Babel also requires CMake, available for download at
http://www.cmake.org/cmake/resources/software.html

Then, please type the following:

1 # tar xzvf openbabel�2.3.2.tar.gz
2 # cd openbabel�2.3.2
3 # mkdir build
4 # cd build
5 # cmake ../
6 # make �j2
7 # sudo make install

For simplicity, we assume that the user has root privileges and can run the sudo command. Alterna-
tively, a local installation is also possible.

Mac OS X users: to get OpenBabel to compile, you might find it helpful to get homebrew
(http://brew.sh). Just type

1 # ruby �e "$(curl �fsSL https://raw.github.com/Homebrew/homebrew/go/install)"

at a terminal prompt.
Then this program can be used to obtain missing software. You may need to type the following

at terminal prompts to get cmake and pkg_config, if you do not have them already:

12 Installing the molBLOCKS suite

1 # brew install cmake
2 # brew install Pkg_Config

As an alternative, MacPorts (http://macports.org/) can also be used to install cmake by typing:

1 # sudo port install cmake

cmake will be in the /opt/local/bin" directory.
For several Linux distributions it is also possible to install openbabel using the built-in pack-

aging system, e.g. apt under Ubuntu Linux. Both the libopenbabel and libopenbabel-dev
packages need to be installed in this case.

The next and final step is the compilation of the molBLOCKS suite. This is simply accomplished
by entering the molblocks directory and typing make. In case of errors, it might be necessary to
edit the path to the openbabel library in the Makefile by modifying the following line:

1 INCLUDES := �Iboost �I/usr/local/include/openbabel�2.0

with the correct location of openbabel on your system.

2.2 Running molBLOCKS in a Virtual Machine
For users who do not wish to or cannot compile molBLOCKS, we prepared an image of Linux Debian
with a pre-installed copy of molBLOCKS (http://compbio.princeton.edu/molblocks/download.html).
Right-click (or control-click on Mac OS X) and download the .ova file containing the virtual
machine image. The image should run out of the box on any virtualization environment, but we
recommend VirtualBox (https://www.virtualbox.org/wiki/Downloads), which is freely available
for Windows, Linux and Mac OS X.

After installing VirtualBox, double-click on the Linux image and import the Virtual Machine
with standard settings. Alternatively, choose File!Import Appliance from Virtual Box menu.
More information on importing a Virtual Machine can be found at
https://www.virtualbox.org/manual/ch01.html#ovf.

After successfully importing the Virtual Machine, start it by pushing the play button. Once
booted, the molBLOCKS program will be in the molblocks directory, ready for use. A README file in
the login directory provides information on how to run the examples.

Using the fragment program
Input files
Parameters
Output

Under the hood

3 — The fragment program

The fragment program is used to break small molecules into chemically meaningful fragments. It
requires a set of rules that define the bonds to be broken, and an input set of small molecules to
fragment.

3.1 Using the fragment program

3.1.1 Input files
fragment requires two input files:

1. small molecules file in SMILES format (named molecules.txt here for convenience)
2. rules file defining the bonds to break in SMARTS format (e.g., RECAP.txt here)

An example of a molecules.txt file is the following:

Clc1ccc(C(N2CCN(CC2)CCOCC(=O)O)c2ccccc2)cc1 cetirizine
CC(=O)CC(C1=CC=CC=C1)C2=C(OC3=CC=CC=C3C2=O)O warfarin
...

Each line of the molecules.txt file contains exactly one molecule, entered as a SMILES string,
followed by an optional name.

An example of a rule file (taken from the default RECAP rules that ship with molBLOCKS) is the
following:

[\$([C!\$(C([\#7])(=O)[!\#1!\#6])](=[O]))]!@[\#7!\$([\#7][!\#1!\#6])] amide
[\$(C=!@O)]!@[\$([O;+0])] ester
[\#6]!@[N;!\$(N=⇤);!\$(N[#6]=[!#6]);!\$(N~[!#1!#6])!X4] amine
...

Each line in the rule file contains a description of a cleavable bond, in the form of a SMARTS pattern
followed by an optional name. It is imperative that the SMARTS pattern define exactly the two atoms

14 The fragment program

Figure 3.1: RECAP rules. The 11 rules that come by default with fragment were originally defined
in [Lew+98], and specify all the bonds that can be cleaved by the fragment program. A user-defined
set of rules can be used in place of the RECAP rules.

that form the chemical bond. Figure 3.1 shows the 11 rules that are used by default by fragment,
obtained from the RECAP method [Lew+98].

molBLOCKS also provides the BRICS fragmentation rules[Deg+08] (file BRICS.txt), and the simple
CCQ fragmentation rule implemented in the MolFragment program by ChemAxon, which cleaves a
bond between two carbon atoms of which at least one is connected to a heteroatom (file CCQ.txt).

3.1.2 Parameters

The fragment program accepts the following parameters (the optional columns specifies whether
a parameter can be omitted):

3.1 Using the fragment program 15

parameter optional example of
argument

description

-i N input.txt input file, one
molecule per line

-o N output.txt output file
-r N rules.txt rules file, one rule

per line
-n N 4 minimum number

of atoms in a
fragment

-e Y flag to turn on
extensive

fragmentation

The -e flag turns on extensive fragmentation, and its use is recommended in order to get all
the possible fragments from a molecule (see “Under the Hood” section for more details). The -n
parameter specifies the minimum number of atoms that can be found in a fragment.
An example of a typical run:

1 # fragment �i molecules.txt �r RECAP.txt �e �n 4 �o fragments.txt

If the -r parameter is left out, the program will alert the user and automatically use the default
RECAP rules.

3.1.3 Output
A typical example of an output (see Figure 3.2):

N[C@H](C=O)CS.NCC(=O)O.O=CCC[C@@H](C(=O)O)N
...

O

H
N

HS

O

N
H

O

OH

O

OH

NH2 H2N O

HS

O O

OH

NH2

H2N

O

HO

+

+

Figure 3.2: Example of fragmentation. The molecule to the left of the arrow is glutathione, broken
by fragment into the three fragments on the right by applying the RECAP rules.

Each line in the output file will contain the fragments obtained by applying the fragmentation rules to
the molecule, whose name (optionally) follows the fragments. Note that the fragments are separated
by a period, the format used by SMILES to represent disconnected structures.

16 The fragment program

To visualize the output, the user can directly copy and paste the SMILES strings that contain the
fragments into a visualization program, such as MarvinSketch (freely available at 1), or a similar one.
Figure 3.2 shows a visual representation of the fragments, obtained with MarvinSketch.

3.2 Under the hood
The main steps carried out by fragment with the extensive fragmentation flag (-e) turned on can be
summarized as follows:

1. read the small molecules as SMILES strings
2. read the cleavage rules as SMARTS patterns
3. for each small molecule

(a) identify all cleavable bonds in the molecule
(b) build a graph representations of the cleavable bonds (see below), where there is an edge

between cleavable bonds if they can be cleaved simultaneously
(c) identify all the maximal cliques in the graph; these cliques can be overlapping
(d) fragment the original molecule by breaking all the bonds in each maximal clique, one

clique at a time

Handling of the SMILES and SMARTS strings is done through the Open Babel C++ API [OBo+11].
It is important to notice that not all bonds that match the rules can be cleaved at the same time, because
doing so would yield fragments smaller than the minimum size. The -e flag ensures that all possible
fragments are generated, using the following strategy. Cleavable bonds are represented as nodes in
an undirected graph, with an edge between two nodes if both bonds can be cut (in other words, the
bonds are independent from each other). Subsequently, the Bron-Kerbosch algorithm [BK73] is used
to identify all maximal cliques. Finally, all the possible fragments are generated by cutting the bonds
within each maximal clique, one clique at a time.

Without the -e flag, the bonds are applied sequentially, stopping as soon as no more fragments
can be produced. In general, it is recommended to use the -e flag, unless dealing with particularly
big molecules or if speed is at a premium. Fragmenting the entire DrugBank collection of 6460
small molecules took 53s (19s without the -e flag) on a iMac with a 2.66 GHz processor.

1http://www.chemaxon.com/products/marvin/marvinsketch/

Using analyze
Input files
Parameters
Output

A tutorial on fragment clustering and en-
richment analysis
Under the hood

Fragment clustering
Enrichment analysis

4 — The analyze program

The analyze program is used to process the output of fragment, and it can generate statistics on
fragment distributions, cluster the fragments by similarity, and perform enrichment analysis on a
subset of small molecules.

4.1 Using analyze

4.1.1 Input files

fragment requires as input file the output of fragment, a simple text file containing one fragmented
molecule per line. Optionally, a background file for enrichment analysis can also be supplied, in the
same format as the input file. The input file should be a proper subset of the background file.

An example of an input.txt file is the following:

c1ccccc1.Nc1ncnc(n1)N 4429
Cn1ncc2c1ncnc2.NCc1ccccc1.Cn1ncc2c1ncnc2N.Cc1ccccc1 1451
...

4.1.2 Parameters

The analyze program accepts the following parameters (the optional columns specifies whether a
parameter can be omitted):

18 The analyze program

parameter optional example of
argument

description

-i N input.txt input file, one set of
fragments per line

-o N output.txt output file
-c Y 0.7 Tanimoto

coefficient to
cluster fragments

-e Y background.txt background
fragments for

enrichment analysis

The -c option is used to perform fragment clustering, based on a Tanimoto similarity threshold
between fragments.

The optional -e parameter specifies the background set that will be used for enrichment analysis.
The background set must contain the main set of fragments (specified in the input.txt file). More
information about fragment clustering and enrichment analysis can be found later in the tutorial and
the “Under the hood” section.

An example of a typical run:

1 # analyze �i fragments.txt �e background.txt �c 0.7 �o distr.txt

If no argument is provided after the -c parameter, a default threshold of 0.8 will be used by the
program.

4.1.3 Output
As an example, we show the five most frequent fragments in DrugBank, as reported by analyze:

261 c1ccccc1
149 Nc1ncnc2c1nc[nH]2
132 Cc1ccccc1
115 Oc1ccccc1
89 Nc1ccccc1
...

If all molecules in the input have an identifier, then the output will show all the molecules that
contain the fragment:

261 c1ccccc1 DB00177 DB00251 DB00275 DB00349 DB00384 ...

In the example above, 261 molecules have a benzene ring, and their DrugBank IDs are shown in
the last column. Please note that columns are always tab separated.
Clustering the fragments at a Tanimoto threshold of 0.7 yields the following top five representative
fragments:

2837 CCCC[C@@H](C(=O)O)N
1983 CC(Cc1ccc(cc1)O)N
411 Cc1c[nH]c2c1cccc2

4.2 A tutorial on fragment clustering and enrichment analysis 19

274 Nc1ncnc2c1cccc2
261 Nc1ncnc2c1cccc2

As expected, the counts for the five most frequent fragments are now much higher, as the number of
members in each cluster are summed up. The output with the -e enrichment option is:

p�value FDR Frequency Fragment Molecules
2.5e�03 5.1e�03 7 O=CCSc1ccncc1
6.4e�03 1.0e�02 3 C(C\#N)C=O
...

The first and second columns show the p�value and FDR, respectively. The third column shows the
frequency of the given fragment (or its cluster), and the fourth column contains SMILES string of the
fragment (or fragment representative). The last column shows which molecules have the fragment in
question, provided that molecule identifiers are present in the input file.

4.2 A tutorial on fragment clustering and enrichment analysis

To illustrate how fragment clustering works, we briefly discuss the fragmentation and clustering of a
set of nine cephalosporins, a widely prescribed class of beta-lactam antibiotics (Figure 4.1). The nine
cephalosporins considered here are: cefacetril, cefaclor, cefadroxil, cefalexin, cefaloglycin, cefalotin,
cefapirin, cefazolin, cefradin – see Figure 4.2 for their chemical structure. The input file containing
the nine cephalosporins can be found in the example directory. The test directory contains the file
that you should obtain after following this tutorial.

First, we need to fragment the cephalosporins and the background set, which contains all the
small molecules (molecular weight <= 900 Daltons) in DrugBank [Wis+06]:

1 # ../fragment �i cephalosp.smi �r RECAP.txt �n 4 �o cephalosp.frag �e
2 # ../fragment �i background.smi �r RECAP.txt �n 4 �o background.frag �e

To cluster the fragments at a Tanimoto coefficient of 0.7 and compute enrichment analysis over
the background distribution, type the following command:

1 # ../analyze �i cephalosp.frag �c 0.7 �o cephalosp.enrichCl07
2 �e background.frag

Figure 4.1: Core structure of cephalosporins. Substituent groups added at position R

1 and R

2

generate variants of the antibiotic.

20 The analyze program

cefacetril cefaclor cefadroxil

cefalexin

cefalexin cefaloglycin cefalotin

cefazolincefapirin

S

N
O

NH

O

N

O

O

CH3
OHO

N

S

Cl

OHO

O

H
N

O

NH2

N

S

CH3

OHO

O

NH

O
HO

NH2

S

N
O

NH

O

NH2

CH3

OHO

S

N
O

H
N

O

NH2

O

O

CH3
OHO

S

N
O

NH

O

S

O

O

CH3
OHO

S

N
O

H
N

O

S

N

O

O

CH3
OHO

N

S

S

N N

S
CH3

OHO

O

H
N

O

NN

N N S

N
O

NH

O

NH2

CH3

OHO

cefradin

Figure 4.2: Nine cephalosporins in DrugBank

The resulting fragment distribution in shown in Figure 4.3. Note how the most frequent fragment
representative closely matches the core structure of cephalosporins shown in Figure 4.1.

4.3 Under the hood

4.3.1 Fragment clustering
Fragments can be clustered using the -c option, followed by a Tanimoto coefficient that specifies the
similarity threshold for clustering. In order to compute the similarity, fragments are converted to a
fingerprint representation, based on linear segments of up to 7 atoms in length (FP2 fingerprints).
The fingerprints are stored as bit arrays, where the presence or absence of a particular linear segment
is represented by a 1 or 0, respectively. The FP2 fingerprint representation is obtained via the Open
Babel library 1. Then, the Tanimoto coefficient T

s

between two fragments x and y is computed as:

Equation 4.1 T

s

= Â
i

X

i

^Y

i

Â
i

X

i

_Y

i

where X and Y are the bit array representations of the linear segments
found in fragment x and y, respectively, and ^ and _ are the bitwise and and or operators.

The analyze program computes pairwise similarities between fragments and converts them to a
graph representation, where an edge between fragments indicates a pairwise Tanimoto greater than
the chosen threshold. Subsequently, the program extracts the connected components of the graph,

1http://openbabel.org/wiki/Tutorial:Fingerprints

4.3 Under the hood 21

Figure 4.3: Cephalosporin fragments clustered at a Tanimoto similarity of 0.7. analyze returns
one representative per cluster, by selecting the fragment with the highest average similarity to all the
other fragments in the cluster. In the test case shown here, the only fragment occurring more than
once with a significant FDR (FDR < 2.2�16) is shown above. The representative fragment occurs
nine times in the main set (once for each cephalosporin) and 36 times in the background (the entire
DrugBank), and closely matches the core structure of cephalosporins shown in Figure 4.1.

and selects the representative element for each cluster as the fragment with the highest average
similarity against all the other fragments in the cluster.

Clustering all the 15,532 fragments of DrugBank took 23s on an iMac with a 2.66 GHz processor.

4.3.2 Enrichment analysis
Enrichment analysis can be carried out in order to identify whether specific fragments (or clusters of
fragments) appear in a set of molecules more frequently than expected by chance, given a background
distribution. The hypergeometric distribution was chosen to model the probability of obtaining a
number of fragments (or clusters of fragments) equal to or greater than the observed by chance alone
(Equation 4.2).

Equation 4.2 P(X � k) = ÂK

x=k

(K

x

)(N�K

n�x

)
(N

n

)

where N is the total number of fragments; K is number of fragments of the given type; n is the
total number of fragments in the main set; and x is the total number of fragments of the given type
in the main set.

analyze returns both uncorrected p�values and FDR corrected p�values, obtained with the proce-
dure of Benjamini-Hochberg [BH95]. As mentioned before, the input set must be a subset of the
background set for the results to be meaningful.

The results of enrichment analysis must be interpreted with caution, as a fragment that is present
only once in the entire background set will show up as highly significant if present in the input set.
Clustering the fragments reduces the number of unique or very rare fragments, but careful judgement
is still needed.

Bibliography

[BH95] Yoav Benjamini and Yosef Hochberg. “Controlling the False Discovery Rate: A Practical
and Powerful Approach to Multiple Testing”. In: Journal of the Royal Statistical Society.

Series B (Methodological) 57 (1995), pages 289–300 (cited on page 21).

[Ber+00] H. M. Berman et al. “The Protein Data Bank”. In: Nucleic Acids Res 28.1 (2000),
pages 235–42 (cited on page 6).

[BK73] Coen Bron and Joep Kerbosch. “Algorithm 457: finding all cliques of an undirected
graph”. In: Commun. ACM 16.9 (1973), pages 575–577 (cited on page 16).

[Deg+08] J. Degen et al. “On the art of compiling and using ’drug-like’ chemical fragment spaces”.
In: ChemMedChem 3.10 (2008), pages 1503–7 (cited on page 14).

[Lew+98] X. Q. Lewell et al. “RECAP–retrosynthetic combinatorial analysis procedure: a pow-
erful new technique for identifying privileged molecular fragments with useful appli-
cations in combinatorial chemistry”. In: J Chem Inf Comput Sci 38.3 (1998) (cited on
pages 5, 14).

[OBo+11] N. M. O’Boyle et al. “Open Babel: An open chemical toolbox”. In: J Cheminform 3
(2011), page 33 (cited on pages 8, 11, 16).

[SLL02] Jeremy G. Siek, Lee-Quan Lee, and Andrew Lumsdaine. “The Boost Graph Library:
User Guide and Reference Manual”. In: (2002) (cited on page 11).

[Wei88] David Weininger. “SMILES, a chemical language and information system. 1. introduc-
tion to methodology and encoding rules”. In: J. Chem. Inf. Comput. Sci. 28.1 (1988),
pages 31–36 (cited on page 6).

[Wis+06] D. S. Wishart et al. “DrugBank: a comprehensive resource for in silico drug discovery
and exploration”. In: Nucleic Acids Res 34.Database issue (2006), pages D668–72 (cited
on pages 6, 19).

