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Selection of NAC TFs for PBM analysis

The number of known NAC binding targets is still relatively limited (6, 41). In this study, a
systematic analysis of the DNA-binding specificity of 14 NAC TFs was performed. ANAC019 was
selected because the tertiary structure of its NAC domain is known (7,11) and because it is
implicated in networks of stress responses and senescence (38, 56). ANACO055 is functionally
and structurally closely related to ANAC019, and ATAF1 is a NAC positive control for PBM
experiments (38, 56, 2, 13, 40, 39) (Figure 1A). These NAC TFs and senescence-associated
NAP (41) also cluster together based on gene regulation by different plant hormones (42) and
they bind to the same sequence in the ERD1 promoter (56, 69). Therefore, PBM analysis of these
could reveal simple relationships between NAC amino acid sequence and DNA-specificity.
ANACO092/ORE1 was selected to analyze further for DNA-binding specificities associated with
senescence (43). Another group of closely related NAC TFs, represented by VND3, VND7, NST2
and SND1, is central to secondary cell wall formation and has been studied extensively with
respect to phenotypes and target genes (44-46). All of these proteins show small evolutionary
distances (Figure 1A) and a high degree of sequence similarity (Figure 1B) for the region involved
in DNA binding (36).

NTL8 and NTL6 are membrane-bound NAC TFs that can act through direct binding to a
conserved sequence in Pathogenesis-Related (PR) genes (47,71,72) allowing comparison of the
PBM and in vivo promoter binding data. Interestingly, these proteins show marked sequence
differences both at the distance and at sequence identity levels with the other NAC proteins

(Figure 1A and 1B) yet they clearly are members of the NAC family (2).

This study also included three distantly related NAC proteins (Figure 1A and B): SOG1 (49),
ANACO003 and VOZ2. VOZ2 has an unconventional CCCH Zinc finger region, known as the VOZ
(Vascular plant One-Zinc finger) domain, at the N-terminal end of the NAC domain (2, 50, 73).

NAC TFs are characterized by the N-terminal DNA-binding NAC domain and various intrinsically
disordered C-terminal domains which function as transcriptional regulatory domains (TRDs)(2)
(Supp. Figure S1). Considering that only the NAC domains of the 14 TFs is used in this study and
since remote disordered regions may fine tune both specificity and affinity of DNA-binding (51)
full-length ANAC092 was also used for the PBM experiments. Finally, the WRKY domain of the
WRKY1 TF was included in the study to bench mark our data to its well-defined DNA-binding
specificity (52).
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Supp. Figure S1 — Sequence conservation and identity of NAC protein DNA binding domains.

A) NAC DNA binding domain sequence similarity tree for all studied NAC proteins shows 3 main clusters for our candidate TFs.

Cluster | contains ANAC092, NST2, SND1, VND3, VND7, ANAC019, ANACO055, ATAF1 and NAP; Cluster Il contains NTL6 and NTL8 and, finally, Cluster IlI

contains VOZ2, ANACO003 and SOG1.

B) Multiple sequence alignment of the DNA binding regions of the selected 14 NAC proteins. Residues that based on the x-ray model of the ANAC019-DNA

complex are close to DNA are shown by a bar. Residues marked with black boxes are common to at least half of the sequences and residues marked in grey

boxes are chemically similar in half of the sequences. Asterisks highlight those residues showing remarkable divergence between NTL6, NTL8 and the remaining NAC proteins.
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Supp. Figure S2 - Disorder prediction in ANAC092.
ID prediction of ANAC092 was performed using PONDR-FIT (Xue et al. 2010). A threshold is applied with disorder assigned to values = 0.5.
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Supp. Figure S3 - A) Boxplots of ES distributions for 130 signature 6-mers for all tested TFs. TF boxplots are grouped according to
clusters in Figure 1A. B) List of the 130 key 6-mers describing NAC DNA specificities as presented on the x-axis of all boxplots
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Supp. Figure S4. — Overview of the number of target genes for different NAC TFs and filtering approaches.

The number of target genes is shown for each TF. Blue bars indicate the number of P target genes through simple screening
of promoters with high scoring k-mers. Green and yellow bars show the number of target genes when integrating co-expression
information and conserved motif information, respectively.
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Supp. Figure S5 — Overlap analysis of different sets of PBM target genes and enrichment analysis for differentially expressed genes.
Bars show the number of target genes for different PBM filtering approaches. COE and Conserved refer to the integration of

co-expression and motif conservation information, respectively. DE refers to integration of differentially expressed gene sets.

Purple, grey and yellow lines display enrichment for DE genes for P targets, integration with co-expression and integration

with conserved motif information, respectively.
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Supp. Figure S6 — Clustering of NAC TFs based on shared target genes.

The overlap between P+COE target genes for all TFs was measured and clustered

using hierarchical clustering with complete linkage (with Pearson correlation as a distance metric).
Overlap was defined as the fraction of target genes for TF row shared with TF column and ranges
from 0 to 100%.
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Supp. Figure S7 — Overlap analysis of DE genes and P+COE target genes for ANAC055, ANA092 and ANACO019.
Overlap between DE genes and P+COE target genes illustrates the redundancy in target genes that exists between these TFs.
P+COE refers to predicted target genes combined with co-expression information.
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Lindemose et al. Supp. Figure S8

Supp. Figure S8 — Clustering of NAC TFs based on shared target gene modules.

Based on the enriched modules per TF (P+COE target genes), hierarchical clustering was performed on both TFs and modules.

Enrichment folds are displayed as different colors in the heatmap.



Lindemose et al.

1o 20 30

---_--__d-

I

"

Legend

+- Fes.Area
000 Biotic
072 Cold
1.435 Orou
2.15 GnTx
2 .67 B Heat
5.08 O=mo
4 .50 Boxid
5.02 alt
5.7 V-B
.45k WoLn
T LATE

¥1dd-fold

Supp. Figure S9 — Overview of stress-responsive expression profiles for the different NAC TFs.
Expression levels in different stress conditions were clustered for all TFs using the BAR Toronto Expression Browser (Stress series).
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Supp. Figure S10 ANAC092 and NTL6 show non overlapping k-mer signatures.
For each protein, the red box shows the ES distribution of k-mers containing the TACGTC key k-mer, which is specific for Cluster 1a and 1b
proteins. The green box shows the ES distribution of k-mers containing the TAAGTA key k-mer, specific for Cluster 3 proteins.
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