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1 The curvilinear helicoidal coordinate system
By the helical axis of a nucleic acid fragment we mean a continuous curve γ(D) that
is piecewise helical, and which has an associated orthonormal, right-handed frame
(d1(D),d2(D),d3(D)). Here, D ∈ [1, n] is a continuous parameterisation of a DNA
fragment with n base pairs that is expressed in units of base pair steps, and which
is measured from the first base pair to the last. The helical axis is formed from seg-
ments of (circular) helices within each junction, that are matched continuously at each
base pair level. For any DNA fragment atomistic configuration, and for integer values
D = i, i = 1, . . . , n both the helical axis points and associated frames take prescribed
values γ(i) = γi and dj(i) = dij, with the data γi and dij computed by Curves+ using
the axis frames at each base pair level. At all intermediate values i < D < i + 1, γ(D)
and dj(D) are obtained by continuous helicoidal interpolation using Euler’s Screw Axis
F (i), which is a line associated with the two base pair levels i and i+ 1. Specifically the
orientations dj(D) are obtained by uniformly rotating the axis frames around the Screw
Axis F (i), while the helical segment γ(D) is obtained by simultaneously and uniformly
translating along, and rotating about, F (i) (see Figure S1). In mathematical terms this
means that in each junction i = 1, . . . , n − 1 there are three constants uj such that the
vector u =

∑3
j=1 ujdj(D) is the (constant) tangent to the line F (i), and the interpolating

frames satisfy

ddj
dD

= u× dj, i < D < i+ 1, dj(i) = dij, dj(i+ 1) = di+1
j . (1)

Similarly in each junction i = 1, . . . , n− 1 there exist three other constants vj such that
the vector v =

∑3
j=1 vjdj(D) satisfies

dγ

dD
= γ ′ = v, i < D < i+ 1, γ(i) = γi, γ(i+ 1) = γi+1, (2)

where the dj(D) are computed in (1). The above conditions uniquely define γ(D) and
dj(D) as smoothly varying quantities within each junction, that are continuous, but no
better, across each base pair. The numbers ui and vi are constant within each junction,
but discontinuous across base pairs. As a result γ ′ is discontinuous at base pair levels
and γ can have a corner (see Figure S1). For this reason, d3 cannot be taken to be both
continuously varying and parallel to γ ′; specifically, the plane (d1,d2) is not in general
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orthogonal to the helical segment γ. Finally, we note that the vector d3(i), which is
called the local helical axis in [1], is not simply related to the local junction Screw Axis
F (i).
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Figure S1: Illustration of the helicoidal interpolation between given axis frames at base
pair levels i and i + 1 (the axis frame at base pair level i − 1 is also shown). The
non-orthogonal curvilinear coordinate system for Euclidean space comprising D along
with polar coordinates (R, θ) in each (d1,d2) plane is free from singularity within each
junction, provided that R is sufficiently small.

2 Computing curvilinear helicoidal coordinates
The explicit formula for the change of coordinates between Cartesian coordinates
x = (x, y, z) and curvilinear helicoidal coordinates (D,R, θ) is:

x = α(D,R, θ) = γ(D) +R cos θ d1(D) +R sin θ d2(D). (3)

where γ, d1 and d2 are defined in (2) and (1). As any two planes (d1(D1),d2(D1)) and
(d1(D2),d2(D2)) intersect if they are not parallel, this change of coordinates will have
singularities, which can be computed explicitly using vector calculus and linear algebra.
In particular, if v3 > 0 (as it can be taken to be for non-planar helices), then locally
the transformation (3) will be invertible provided that R is sufficiently small, so that
(D,R, θ) = α−1(x). To explicitly compute α−1(x), Curves+ searches for the value D∗
such that:

(x− γ(D∗)) · d3(D
∗) = 0. (4)

The helicoidal coordinates of the point x are then (D∗, R∗, θ∗), where R∗ is the length of
the vector x − γ(D∗), and the angle θ∗ is measured anti-clockwise around d3(D

∗) from
d1(D

∗).
The existence of curvilinear helicoidal coordinates for a given point is subject to there

being (at least) one value of D such that the point lies in the (d1(D),d2(D)) plane. The
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extent of the region of space for which curvilinear helicoidal coordinates exist and are free
from singularity depends therefore on the helical axis. Figure S2 (a) shows the average
helical axis of an octadecamer (the ATGC oligomer in the ABC library of simulations),
in which the (d1(D),d2(D)) planes at all values of D are close to being parallel one to
another. The region of space for which curvilinear helicoidal coordinates exist and are
unique then extends beyond the boundary of the box, and is limited only by the two
(d1,d2) planes at the first and last base pair levels. In contrast panels (b) and (c) of
Figure S2 show the example of the highly deformed helical axis of the protein-bound
TATA box (PDB code 1CDW). Here, the (d1,d2) planes at the first and last base pair
levels intersect in a line within the boundary of the box. The green sphere in panel (c) is a
point lying on the intersection of two distinct (d1,d2) planes so that there are two distinct
values D∗ for which (4) is satisfied. The green lines are the two vectors (x− γ(D∗)) for
the two corresponding values of D∗. The helicoidal coordinates are only valid sufficiently
close to the DNA axis such that no two distinct (d1,d2) planes can intersect.

(a) (b) (c)

Figure S2: The orange spheres fill the entire region within a prescribed box (of size
60x60x80Å centred around the helical axis shown in blue) for which curvilinear helicoidal
coordinates do not exist, for (a) a comparatively undeformed helical axis of an octade-
camer, and (b),(c) the helical axis of the highly deformed TBP-bound TATA box. The
green sphere in panel (c) has two sets of helicoidal coordinates (see text).

3 Calculating ion concentrations
Given an ensemble of ion locations, the corresponding ensemble of ion helicoidal coordi-
nates (D,R, θ) is found according to the procedure described in section 2, and is stored in
a 3D histogram H(D,R, θ). In order to obtain ion concentrations expressed as a molarity,
it is necessary to divide the ion count in each bin of the histogram H by its corresponding
Euclidean volume V with respect to the helical axis of the reference structure. For the
bin with the ranges D1 < D < D2, R1 < R < R2, θ1 < θ < θ2 (see Figure S3)

V =

∫ D2

D1

∫ R2

R1

∫ θ2

θ1

det

(
∂α

∂(D,R, θ)

)
dDdRdθ, (5)
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where ∂α/∂(D,R, θ) is the Jacobian matrix of the transformation (3). A simple compu-
tation using equations (1) and (2) provides the expression

det

(
∂α

∂(D,R, θ)

)
= R(v3 − u2R cos θ + u1R sin θ) > 0, (6)

where the last condition is always satisfied for R sufficiently small, i.e. for volume elements
located sufficiently close to the helical axis, because v3 is positive by construction.
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Figure S3: Shape of an (artificially large) histogram bin with curvilinear helicoidal coor-
dinate ranges D1 < D < D2, R1 < R < R2, θ1 < θ < θ2 with respect to the helical axis
γ.

Evaluation of the definite integral (5) using (6) then yields the formula

V = (D2 −D1)

(
(θ2 − θ1)

2
(R2

2 −R2
1)v3 −

(R3
2 −R3

1)

3

(
u1(cos θ2 − cos θ1) + u2(sin θ2 − sin θ1)

))
,

(7)

which reduces to the more familiar expression

V = (D2 −D1)
θ2 − θ1

2
(R2

2 −R2
1)v3. (8)

when u1 = u2 = 0, corresponding to the cases where the helical segment γ is straight,
with the corresponding coordinates then being cylindrical, and the bin accordingly being a
torsionally-sheared truncated wedge, as opposed to the distorted case shown in Figure S3.

4 Supplementary figures
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Figure S4: Time-averaged K+ populations within the DNA grooves for the unique base
pair steps (A9pT10, T10pG11, G11pC12) belonging to the central tetranucleotide of the
ATCG oligomer for increasing durations (ns) of the molecular dynamics trajectory.
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Figure S5: Chlorine ion distributions for the 1 µs AGCT trajectory: 1D R distribu-
tion (top left, solid line, contrasted with the K+ distribution, dotted line line), 2D DR
distribution (top right), 2D DA distribution (bottom left), 2D RA distribution (bottom
right). All values are molarities, and, for the 2D plots, the blue to red color scale indicates
increasing values.
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Figure S6: 3D K+ distributions derived from the curvilinear helicoidal analysis of the
1 µs ATGC trajectory. The average DNA structure is shown as a line drawing on the
left (G: blue, C: green, A: red, T: orange) and as a grey solvent accessible surface on the
right. Molarity isodensity surfaces are plotted at 15 M (solid red) and 5 M (green mesh).
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Figure S7: Variations in K+ molarity along the DNA grooves (solid lines) of the ATGC
oligomer. Values are averaged over the 1 µs ATGC trajectory and compared with vari-
ations in groove width (dotted lines). Groove width variations are plotted in Å with
respect to the respective minimal values (major: 9.4 Å, minor: 2.5 Å) on the same scale
as the molarities. Left: major groove. Right: minor groove.
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