Supplemental data

Table S1. Modulation of morophological phenotypes by *AtZAT6* expression. The rosette leaf numbers were assayed from 30-d-old plants, and the other data were assayed from 70-d-old plants. n = 15. Means \pm SD are shown in the results, and asterisk symbols (*) indicates the significant difference of *p*<0.05 compared to WT.

 Table S2. Primers used for vector construction.

Table S3. Primers used for quantitative real-time PCR.

Fig. S1. Expression level changes of *AtZAT6* under abiotic and biotic stress conditions. Arabidopsis eFP Browser (<u>http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi</u>) was used for characterization of *AtZAT6* gene expression.

Fig. S2. Transactivation activity of AtZAT6 in yeast. The plastids of AtZAT6-pGBKT7, pCL-1-pGBKT7, pGBKT7 were transformed into the yeast strain AH109, and the transformants were then plated on selective SD medium [SD medium lacking Trp, SD medium lacking Trp, Ade and His with 10 mM 3-amino-1,2,4-triazole (3-AT)] and grown for 2 d at 30 ° C. The pCL-1-pGBKT7 and the empty vector pGBKT7 were used as positive and negative controls, respectively.

Fig. S3. Phenotypes of 21-d-old WT and *AtZAT6* overexpressing T₁ generation plants. Top, 21-d-old WT and *AtZAT6* overexpressing T₁ generation plants in soil. Bottom, the relative mRNA level of *AtZAT6* of the above plants. The expression level of *AtZAT6* in WT was normalized as 1.0. Means \pm SDs of three independent experiments are shown in the results,

and asterisk symbols (*) indicates the significant difference of p < 0.05 compared to WT.

Fig. S4. The expression level of *AtZAT6* in *AtZAT6* knockdown plants. The expression level of *AtZAT6* in WT was normalized as 1.0. Means \pm SDs of three independent experiments are shown in the results, and asterisk symbols (*) indicates the significant difference of *p*<0.05 compared to WT.

Fig. S5. Phenotypes of 7-d-old WT and *AtZAT6* overexpressing plants on MS plate. (A)(B) 7-d-old WT and *AtZAT6* overexpressing plants on MS plate. Bars = 0.5 cm. (C) Primary root length of 7-d-old WT and *AtZAT6* overexpressing plants on MS plate. Means \pm SDs (n = 30) are shown in the results, and asterisk symbols (*) indicates the significant difference of *p*<0.05 compared to WT.

Fig. S6. Modulation of AtZAT6 expression affects glutathione pool and redox state. (A)-(C) Quantifications of GSH (A), GSSG (B) and GSH redox state (C). Means \pm SDs of three independent experiments are shown in the results, and asterisk symbols (*) indicates the significant difference of *p*<0.05 compared to WT.

Fig. S7. Phenotype of 35S::GFP-ZAT6 transgenic plants. (A)(B) 28-d-old of WT and 35S::GFP-ZAT6 transgenic plants in MS plate (A) and in soil (B). Bars = 1 cm. (C) AtZAT6 expression levels in WT and 35S::GFP-ZAT6 transgenic plants by real-time PCR. The expression level of AtZAT6 in WT was normalized as 1.0. (D) Growth of Pst DC3000 and Pst DC3000(avrRpt2) on WT and 35S::GFP-ZAT6 transgenic plants at 0 and 3 dpi of bacterial infection, respectively. Means \pm SDs of three independent experiments are shown in the results, and asterisk symbols (*) indicates the significant difference of p<0.05 compared to

WT.

Morphology	WT (Col-0)	<u>35S::ZAT6-3</u>	<u>35S::ZAT6-6</u>	<u>35S::ZAT6-8</u>	amiR-6	amiR-10
Rosette leaf number	11.13 ± 0.90	11.47 ± 1.11	$14.17\pm1.05^*$	$14.93\pm1.60^*$	10.93 ± 1.23	11.20 ± 1.37
Leaf length (cm)	2.39 ± 0.18	2.27 ± 0.11	$1.54\pm0.23*$	$1.38\pm0.20^{\ast}$	2.42 ± 0.14	2.38 ± 0.09
Leaf width (cm)	1.42 ± 0.16	1.39 ± 0.15	$0.90\pm0.16^*$	$0.85\pm0.16^{\ast}$	1.45 ± 0.13	1.43 ± 0.11
Plant height (cm)	30.91 ± 3.80	28.77 ± 3.45	$16.47 \pm 3.52*$	$14.66\pm2.62^*$	31.18 ± 3.47	31.75 ± 3.65
Silique length (cm)	1.42 ± 0.08	1.41 ± 0.08	$1.21\pm0.11*$	$1.12\pm0.08*$	1.42 ± 0.10	1.40 ± 0.09
Sepal length (mm)	2.02 ± 0.14	2.03 ± 0.15	$1.63\pm0.17*$	$1.51\pm0.18^{\ast}$	2.01 ± 0.08	1.99 ± 0.12
Petal length (mm)	3.19 ± 0.14	3.26 ± 0.14	$2.77\pm0.17*$	$2.81\pm0.16^{\ast}$	3.10 ± 0.17	3.13 ± 0.12
Stamen length (mm)	2.47 ± 0.15	2.46 ± 0.11	$2.09\pm0.12^*$	$2.01\pm0.14*$	2.43 ± 0.11	2.48 ± 0.12
Carpel length (mm)	2.79 ± 0.14	2.73 ±0.12	$2.47\pm0.16^*$	$2.42\pm0.11*$	2.73 ± 0.13	2.77 ± 0.18

Table S1. Modulation of morophological phenotypes by AtZAT6 expression.

The rosette leaf numbers were assayed from 30-d-old plants, and the other data were assayed from 70-d-old plants. n = 15. Means \pm SD are shown in the results, and asterisk symbols (*) indicates the significant difference of p<0.05 compared to WT.

 Table S2. Primers used for vector construction.

Gene	Primer	Sequence	Specificity		
	ZAT6OXF	5'-TCCCCCGGGATGGCACTTGAAACTCTTAC-3'	ZAT6-pBIM and 35S::EGFP-AtZAT6		
	ZAT6OXR	5'-CCGCTCGAGTTAGGGTTTCTCCGGGAAGT-3'	vector construction		
ZAT6	ProZAT6F	5'-ACGCGTCGACGGAACTAACAATATGATCAA-3'	ProZAT6-pBI101.2 vector construction		
	ProZAT6R	5'-CGGGATCCTATCTTGAAGACTAGCTACT-3'			
	ZAT6I	5'-gaTAAACGTGCGACTTCACGCTTtctctcttttgtattcc-3'			
	ZAT6II	5'-gaAAGCGTGAAGTCGCACGTTTAtcaaagagaatcaatga-3'			
	ZAT6III	5'-gaAAACGTGAAGTCGGACGTTTTtcacaggtcgtgatatg-3'amiR-ZAT6-pBARN vector constru5'-gaAAAACGTCCGACTTCACGTTTtctacatatatattcct-3'			
	ZAT6IV				
	А	5'-TCATTTCATTTGGAGAGCCCCTGCAAGGCGATTAAGTTGGGTAAC-3'	, ZAT6-pGBKT7 vector construction		
	В	5'-AGGATCCGATTCGTACACCCGCGGATAACAATTTCACACAGGAAACAG-3'			
	ZAT6F	5'-CGGGATCCGAATGGCACTTGAAACTCTTAC-3'			
mini35S	ZAT6R	5'-AACTGCAGTTAGGGTTTCTCCGGGAAGT-3'			
	mini35SF	5'-GGAAGCTTGATATCTCCACTGACGTAAGGG-3'	mini35S-pCAMBIA1391Z and 4×TACAAT-mini35S-pCAMBIA1391Z vector construction		
	mini35SR	5'-CAGGATCCCGTGTTCTCTCCAAATGAAATG-3'			
	TACAAT-mini35SF	5'-GGAAGCTTTACAATTACAATTACAATTACAATGATATCTCCACTGACGTAAGGG-3'			
	TAAAAT-mini35SF	5'-GGAAGCTTTAAAATTAAAATTAAAATTAAAATGATATCTCCACTGACGTAAGGG-3'			

Gene	Locus	Primer	Sequence
UBQ10	At4g05320	UBQ10F	5'-TCCGGATCAGCAGAGGCTTA-3'
		UBQ10R	5'-TCAGAACTCTCCACCTCAAG-3'
ZAT6	At5g04340	ZAT6F	5'-AAACCGTGACCTTGACCTGC-3'
		ZAT6R	5'-CTCCGTTCTTTCCTTCGTAGTG-3'
EDS1	At3g48090	EDS1F	5'-TGGAGGGTTCAACGTTTAGAAAG-3'
		EDS1R	5'-CAGAGGAGAATGCGATTTGTGA-3'
PAD4	At3g52430	PAD4F	5'-TCTCCATCCACGACCTCGTT-3'
		PAD4R	5'-AGTAAGTTCCAAAGGGCCAGAAT-3'
PR1	At2g14610	PR1F	5'-ATGAATTTTACTGGCTATTC-3'
		PR1R	5'-AACCCACATGTTCACGGCGGA-3'
PR2	At3g57260	PR2F	5'-CGATACCTTGCCAAGTCCAT-3'
		PR2R	5'-TGTACCGGAATCTGACACCA-3'
PR3	At3g12500	PR3F	5'-ATGAAGATCAGACTTAGCATAAC-3'
		PR3R	5'-AGCTCATTGCCACAGTCGAC-3'
PR4	At3g04720	PR4F	5'-AGTGATCAAACAGAGGAACC-3'
		PR4R	5'-TCTGAAACAGCCGACTCTTC-3'
PR5	At1g75040	PR5F	5'-CGTACAGGCTGCAACTTTGA-3'
		PR5R	5'-GCGTTGAGGTCAGAGACACA-3'
ACTIN2	At3g18780	Promoter-ACTIN2F	5'-TAGTTAACACGAGGGAAAAGGCT-3'
		Promoter-ACTIN2R	5'-AAAGTGAGGAGGACAACGAGACA-3'
EDS1	At3g48090	Promoter-EDS1F	5'-GTTTATCAGATTCCACGTA-3'
		Promoter-EDS1R	5'-GTCTTGGTTCTATCAGCA-3'
PAD4	At3g52430	Promoter-PAD4F	5'-AATGGACCTACCTTTCAC-3'
		Promoter-PAD4R	5'-TGTATCTTCTTGGCTTGT-3'
PR1	At2g14610	Promoter-PR1 I-F	5'-TTGCTTCATCAATCTTAG-3'
		Promoter-PR1 I-R	5'-TACATTAGGTAAACAACG-3'
PR1	At2g14610	Promoter-PR1 II-F	5'-CTGCGTATTAGTGTTTGG-3'
		Promoter-PR1 II-R	5'-AAATCGTATCGGACAGTT-3'
PR1	At2g14610	Promoter-PR1 III-F	5'-CAAACTGTCCGATACGAT-3'
		Promoter-PR1 III-R	5'-ATCTTGTCCTTACACACATT-3'
PR2	At3g57260	Promoter-PR2-F	5'-TTCTATCAAGGGAATGGTA-3'
		Promoter-PR2-R	5'-TACACACGACTTCAGTTT-3'
PR3	At3g12500	Promoter-PR3-F	5'-TGCTTCAGTTTAGGAAAT-3'
		Promoter-PR3-R	5'-CTGCGTGCTATTCTTATG-3'

 Table S3. Primers used for quantitative real-time PCR.

PR4	At3g04720	Promoter-PR4-F	5'-ACTTCAGCACTCCAATTC-3'
		Promoter-PR4-R	5'-TTTCTTGTGATTCTACGC-3'
PR5	At1g75040	Promoter-PR5 I-F	5'-CGTTCAAGTAGCAAATCAGG-3'
		Promoter-PR5 I-R	5'-TGTTGTGAGGTGCGAGTT-3'
PR5	At1g75040	Promoter-PR5 II-F	5'-TGCACTAATCACTCCGTTTC-3'
		Promoter-PR5 II-R	5'-GTACGTTAAATGGTATCGTTATGTAG-3'
PR5	At1g75040	Promoter-PR5 III-F	5'-AGTCCATCTTCTTCCTCTCTGT-3'
		Promoter-PR5 III-R	5'-ACCTGTCGTGTGGGCTTTG-3'
PR5	At1g75040	Promoter-PR5 IV-F	5'-AGGTGTATTATATTAGAATTAGAAT-3'
		Promoter-PR5 IV-R	5'-ATGGTCCACACGGTTTCG-3'
CBF1	At4g25490	CBF1F	5'-AACTTCGCTGACTCGGCTTGG-3'
		CBF1R	5'-AACAGACGGCGGCGGTAAA-3'
CBF2	At4g25470	CBF2F	5'-CGGTGATTACAGTCCGAAGC-3'
		CBF2R	5'-CAAGCCGAGTCAGCGAAA-3'
CBF3	At4g25480	CBF3F	5'-CGGTAAGTGGGTTTGTGA-3'
		CBF3R	5'-GTTCCGCCGTGTAAATAG-3'
CBF4	At5g51990	CBF4F	5'-AAACGAGCTGGGAGGAAGAA-3'
		CBF4R	5'-AAGCAGAGCGACCACGAAGA-3'
DREB2A	At5g05410	DREB2AF	5'-AAAGGTAAAGGAGGACCAGA-3'
		DREB2AR	5'-GCCAAAGGACCATACATAGC-3'
DREB2B	At3g11020	DREB2BF	5'-GTATGAAGGGTAAAGGAGGA-3'
		DREB2BR	5'-CTGAGGGAAGTTAAGACGAG-3'
CBF1	At4g25490	Promoter-CBF1 I-F	5'-TTGTTTTGCAGTAAATTAGG-3'
		Promoter-CBF1 I-R	5'-ATTCATGCTTTCGTGGAT-3'
CBF1	At4g25490	Promoter-CBF1 II-F	5'-GATTCGATGAAACATATG-3'
		Promoter-CBF1 II-R	5'-CTTGAAAGCAACTACTAAA-3'
CBF1	At4g25490	Promoter-CBF1 III-F	5'-TGCATATCTTATTGTGAA-3'
		Promoter-CBF1 III-R	5'-ATAGCAAGTTATCTTGAA-3'
CBF2	At4g25470	Promoter-CBF2-F	5'-ATGGTTGTCGTACCCTAT-3'
		Promoter-CBF2-R	5'-AAGTTTCTGACCCTTCAC-3'
CBF3	At4g25480	Promoter-CBF3 I-F	5'-CCACAAAACCTGCATTAC-3'
		Promoter-CBF3 I-R	5'-GTTGCTAGATTCGAGACG-3'
CBF3	At4g25480	Promoter-CBF3 II-F	5'-TTAGGTTTCAGACTCGTT-3'
		Promoter-CBF3 II-R	5'-TAGATCAATTAGAAGCAT-3'
CBF3	At4g25480	Promoter-CBF3 III-F	5'-GAGAATTTTAATTAGCAGTC-3'
		Promoter-CBF3 III-R	5'-GAAATATGGTATTTTGGA-3'
CBF3	At4g25480	Promoter-CBF3 IV-F	5'-ACATGGCAGATCTTAATG-3'

Promoter-CBF3 IV-R 5'-TTAGAGGCAAAAGAAAG-3'

Fig. S1. Expression level changes of *AtZAT6* under abiotic and biotic stress conditions. Arabidopsis eFP Browser (<u>http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi</u>) was used for characterization of *AtZAT6* gene expression.

Fig. S2. Transactivation activity of AtZAT6 in yeast. The plastids of AtZAT6-pGBKT7, pCL-1-pGBKT7, pGBKT7 were transformed into the yeast strain AH109, and the transformants were then plated on selective SD medium [SD medium lacking Trp, SD medium lacking Trp, Ade and His with 10 mM 3-amino-1,2,4-triazole (3-AT)] and grown for 2 d at 30 $^{\circ}$ C. The pCL-1-pGBKT7 and the empty vector pGBKT7 were used as positive and negative controls, respectively.

Relative mRNA level 39.66 \pm 10.84* 57.94 \pm 43.01* 243.42 \pm 93.25*337.85 \pm 143.06*504.04 \pm 135.84*

Fig. S3. Phenotypes of 21-d-old WT and *AtZAT6* overexpressing T₁ generation plants. Top, 21-d-old WT and *AtZAT6* overexpressing T₁ generation plants in soil. Bars = 1 cm. Bottom, the relative mRNA level of *AtZAT6* of the above plants. The expression level of *AtZAT6* in WT was normalized as 1.0. Means \pm SDs of three independent experiments are shown in the results, and asterisk symbols (*) indicates the significant difference of *p*<0.05 compared to WT.

Fig. S4. The expression level of *AtZAT6* in *AtZAT6* knockdown plants. The expression level of *AtZAT6* in WT was normalized as 1.0. Means \pm SDs of three independent experiments are shown in the results, and asterisk symbols (*) indicates the significant difference of *p*<0.05 compared to WT.

Fig. S5. Phenotypes of 7-d-old WT and *AtZAT6* overexpressing plants on MS plate. (A)(B) 7-d-old WT and *AtZAT6* overexpressing plants on MS plate. Bars = 0.5 cm. (C) Primary root length of 7-d-old WT and *AtZAT6* overexpressing plants on MS plate. Means \pm SDs (n = 30) are shown in the results, and asterisk symbols (*) indicates the significant difference of *p*<0.05 compared to WT.

Fig. S6. Modulation of AtZAT6 expression affects glutathione pool and redox state. (A)-(C) Quantifications of GSH (A), GSSG (B) and GSH redox state (C). Means \pm SDs of three independent experiments are shown in the results, and asterisk symbols (*) indicates the significant difference of *p*<0.05 compared to WT.

Fig. S7. Phenotype of *355::GFP-ZAT6* transgenic plants. (A)(B) 28-d-old of WT and *355::GFP-ZAT6* transgenic plants in MS plate (A) and in soil (B). Bars = 1 cm. (C) *AtZAT6* expression levels in WT and *355::GFP-ZAT6* transgenic plants by real-time PCR. The expression level of *AtZAT6* in WT was normalized as 1.0. (D) Growth of *Pst* DC3000 and *Pst* DC3000(*avrRpt2*) on WT and *355::GFP-ZAT6* transgenic plants at 0 and 3 dpi of bacterial infection, respectively. Means \pm SDs of three independent experiments are shown in the results, and asterisk symbols (*) indicates the significant difference of *p*<0.05 compared to WT.