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I. CALCULATION OF THE ODMR SPECTRA

We consider a spin defect with the symmetry axis along the z-axis. The external magnetic field B lies in the xz-
plane and its orientation is given by the polar angle θ, such that Bz = B cos θ and Bx = B sin θ. The spin Hamiltonian
for the S = 3/2 system is written in the form

H = geµBB(Sz cos θ + Sx sin θ) +D(S2
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Here, I is the unit matrix, Sz and Sx denote the spin matrices
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The numerical solution of the Hamiltonian (S1) gives the eigenstates Ek and the eigenfunctions in the basis
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It is instructive to consider analytically weak magnetic fields geµBB � 2D, which is the most relevant for magnetic
field sensing. In this case, the ms = ±3/2 and ms = ±1/2 states can be considered separately. For the ms = ±3/2
states the Hamiltonian (S1) is simplified to the form
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and the solution is E1,4 = D ± 3
2geµBB cos θ with the eigenfunctions
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For the ms = ±1/2 states the Hamiltonian (S1) is simplified to the form
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and the solution is E2,3 = −D ± 1
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One can see from Eq. (S7) that the ms = ±1/2 states are mixed in the transverse component of the magnetic field.
This results in four possible RF-driven transitions (see Fig. 2 of the main text). The exclusion, when only two

RF-driven transitions are observed, is for three specific polar angles θ = 0◦, θ = 90◦ and θ = arccos(1/
√

3) ≈ 54.7◦.
We have calculated the relative probabilities of these transitions between the j-th and k-th spin sublevels using

Wjk ∼
∣∣B1y〈j|Sy|k〉

∣∣2 . (S8)

Here, the RF driving field B1y is applied along the y-axis, i.e., perpendicular to the defect symmetry axis and the
magnetic field B. In order to account for the optical spin pumping, we assume the same optically induced depletion
of the ms = +1/2 and ms = −1/2 states. This means that there is no RF-induced transitions between these states,
which is taken into account by setting to zero the corresponding components of the spin matrix in (S8):
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The results of these calculations are color-coded in Fig. 2(a) of the main text.
It is worth to note that in our experiments the RF field is not exactly parallel to the y-axis. To calculate the

RF-induced transitions for arbitrage orientation of B1 we use Eq. (2) in the main text and from the best fit of the
ODMR line amplitudes in Fig. 4(b) we find the angle between B1 and the c-axis of SiC is 65◦.

II. LASER EFFECT ON THE ODMR SPECTRA
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FIG. S1: (a) An ODMR spectrum of 6H-SiC obtained at a laser power P = 76 mW. (b) Laser power dependence of the ODMR
spectra. (c) The ODMR contrast of different defects as a function of laser power.

We have measured ODMR spectra as a function of laser power P to determine the laser-induced heating in our
SiC samples. We monitor the temperature variation with P using the VSi-VC defect as an internal thermometer
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[Fig. S1(b)]. At P = 76 mW the VSi-VC ZFS is reduced by 2.3 MHz [Fig. S1(a)], which corresponds to a temperature
increase by ∆T = 2.1 K.

Remarkably, the ODMR contrast ∆PL/PL as a function of P reveals qualitatively different behavior for different
defects [Fig. S1(c)]. For the VSi(V2) defect ∆PL/PL being proportional to the optically-induced spin polarization is
well described by

∆PL

PL
=

α0

1 + P0/P
, (S10)

where α0 = −1.5 × 10−4 is the ODMR contrast in saturation and P0 = 50 mW is a characteristic pump power (the
laser is focused onto a spot of about several hundreds micrometers in diameter).

The ODMR contrast for the VSi-VC defect is constant α0 = −0.3× 10−4 down to the laser power when the PL is
still detectable, i.e., P0 � 7 mW, indicating a very efficient optical spin pumping mechanism.

For the VSi-Sii Frenkel pair the ODMR contrast changes its sign with increasing P [Figs. S1(b) und (c)], which is
quite unusual. We expect that the position of the interstitial Si atom within the Frenkel pair is very sensitive to the
local strain and/or electric field, which in turn can be induced by photo-(di)charging of the defects nearby.
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