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I. CALCULATION OF THE ODMR SPECTRA

We consider a spin defect with the symmetry axis along the z-axis. The external magnetic field B lies in the zz-
plane and its orientation is given by the polar angle 6, such that B, = B cosf and B, = Bsinf. The spin Hamiltonian
for the S = 3/2 system is written in the form

H = geppB(S. cos + S, sinf) + D(S? — ZI) (S1)

Here, 7 is the unit matrix, S, and S, denote the spin matrices
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The numerical solution of the Hamiltonian (S1) gives the eigenstates Fj and the eigenfunctions in the basis
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It is instructive to consider analytically weak magnetic fields g.upB < 2D, which is the most relevant for magnetic
field sensing. In this case, the my = +3/2 and my = +1/2 states can be considered separately. For the m, = +3/2
states the Hamiltonian (S1) is simplified to the form

3 cos @ 0
H =598 [ 0 —cosf
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and the solution is Fy 4 = D + % geltp B cos @ with the eigenfunctions
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For the ms = +1/2 states the Hamiltonian (S1) is simplified to the form
1 cosf 2sinfd
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and the solution is Fo 3 = —D + %gepBB\/ 1+ 3sin® 0 with the eigenfunctions
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One can see from Eq. (S7) that the my; = £1/2 states are mixed in the transverse component of the magnetic field.

This results in four possible RF-driven transitions (see Fig. 2 of the main text). The exclusion, when only two

RF-driven transitions are observed, is for three specific polar angles # = 0°, § = 90° and 6 = arccos(1/v/3) ~ 54.7°.
We have calculated the relative probabilities of these transitions between the j-th and k-th spin sublevels using

. 2
Wik ~ | By (315 |k)[" - (S8)

Here, the RF driving field By, is applied along the y-axis, i.e., perpendicular to the defect symmetry axis and the
magnetic field B. In order to account for the optical spin pumping, we assume the same optically induced depletion
of the my = +1/2 and m, = —1/2 states. This means that there is no RF-induced transitions between these states,
which is taken into account by setting to zero the corresponding components of the spin matrix in (S8):
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The results of these calculations are color-coded in Fig. 2(a) of the main text.

It is worth to note that in our experiments the RF field is not exactly parallel to the y-axis. To calculate the
RF-induced transitions for arbitrage orientation of B; we use Eq. (2) in the main text and from the best fit of the
ODMR line amplitudes in Fig. 4(b) we find the angle between By and the c-axis of SiC is 65°.

II. LASER EFFECT ON THE ODMR SPECTRA
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FIG. S1: (a) An ODMR spectrum of 6H-SiC obtained at a laser power P = 76 mW. (b) Laser power dependence of the ODMR
spectra. (c) The ODMR contrast of different defects as a function of laser power.

We have measured ODMR spectra as a function of laser power P to determine the laser-induced heating in our
SiC samples. We monitor the temperature variation with P using the Vg;-V¢ defect as an internal thermometer



[Fig. S1(b)]. At P =76 mW the Vg;-V¢ ZFS is reduced by 2.3 MHz [Fig. S1(a)], which corresponds to a temperature
increase by AT = 2.1 K.

Remarkably, the ODMR contrast APL/PL as a function of P reveals qualitatively different behavior for different
defects [Fig. S1(c)]. For the Vg;(V2) defect APL/PL being proportional to the optically-induced spin polarization is
well described by

APL
- % (S10)
PL 1+ Py/P
where ap = —1.5 x 10™* is the ODMR. contrast in saturation and Py = 50 mW is a characteristic pump power (the

laser is focused onto a spot of about several hundreds micrometers in diameter).

The ODMR contrast for the Vgi-V¢ defect is constant ag = —0.3 x 10~ down to the laser power when the PL is
still detectable, i.e., Py <« 7 mW, indicating a very efficient optical spin pumping mechanism.

For the Vg;-Si; Frenkel pair the ODMR contrast changes its sign with increasing P [Figs. S1(b) und (c)], which is
quite unusual. We expect that the position of the interstitial Si atom within the Frenkel pair is very sensitive to the
local strain and/or electric field, which in turn can be induced by photo-(di)charging of the defects nearby.
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