
Integrative Sparse K-means Clustering

Here we give a detailed description of the integrative sparse k-means ap-
proach to clustering multiple data sources. The approach is a straightforward
extension of the sparse k-means method to cluster a single data source that is
described in [1], and we borrow much of the notation therein.

Let X : p × n be a single data source with p features and n objects to be
clustered. Let Θ be a partition of the objects into K clusters, and let x̄jk be
the arithmetic mean of the objects belonging to cluster k (k ∈ {1, . . . ,K}) for
feature j (j ∈ {1, . . . , p}). The standard sparse k-means clustering algorithm
then determines Θ by maximizing the weighted between cluster sum of squares
(BCSS)

BCSS =

p∑
j=1

wj

∑
k<k′

(x̄jk − x̄jk′)2

subject to ||w||2 ≤ 1, wj ≥ 0 for each j, and ||w||1 =
∑p

j=1 wj ≤ s. A large
weight wj indicates that the j’th feature contributes strongly to the clustering.
If the value of the tuning parameter s is small some of the wj will shrink to 0
and those features will not be involved in the clustering.

We extend the above framework to accommodate m data sources X1 : p1 ×
n, . . . ,Xm : pm × n, where n is the number of objects to be clustered (common
to all data sources) and pi is the number of features in data source i. Let x̄ijk
be the arithmetic mean of the objects belonging to cluster k (k ∈ {1, . . . ,K}),
for feature j (j ∈ {1, . . . , pi}) of data source i (i ∈ {1, . . . ,m}). The inte-
grative sparse k-means clustering algorithm then determines a partition Θ by
maximizing the weighted between cluster sum of squares

BCSS =

m∑
i=1

pi∑
j=1

wij

∑
k<k′

(x̄ijk − x̄ijk′)2

subject to

• ||wi||2 ≤ 1 for i = 1, . . . ,m.

• wij ≥ 0 for all i, j.

• ||wi||1 =
∑pi

j=1 wij ≤ si

Note that this framework allows for a different tuning parameter for each data
source (as given by the si’s). Choosing si = 1 corresponds to perfect sparsity
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for data source i (just one feature selected) and choosing si =
√
pi corresponds

to no sparsity (all features included). To reduce the complexity of choosing m
different sparsity parameters we can instead choose a single α, 0 < α < 1 and
define si = α

√
pi for each i. Here α adjustes the sparsity level for all data

sources, relative to the number of features in each source.
The integrative clustering framework is potentially unbalanced, as the num-

ber of features or the amount of variablity in a data source can potentially
affect the degree to which it influences the clustering. Hence, we use a default
procedure to normalize each data source before clustering. This normalization
procedure follows three steps:

1. Center by subtracting the mean within each feature (this will not affect
k-means clustering, but simplifies the normalization process).

2. Scale each feature by dividing by its standard deviation.

3. Divide all of the values in data source i by p
1/4
i .

This procedure ensures that the total weighted sum of squares in each data
source,

pi∑
j=1

wijx
2
ij

are equal for any w1, . . . ,wm that satisfy the constraints above. Note that the
total sum of squares is the between cluster sum of squares plus the within cluster
sum of squares.

To choose the number of clusters K and the tuning parameters si (or α) for
integrative clustering we use the gap statistic in a way that is analogous to the
approach described in [1]. However, to compute the gap statistic we permute
the objects within each data source, rather than within each feature. This is
because we would like to identify clusters that are significantly expressed on
multiple data sources, rather than multiple features in a single data source.
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