
 

 

Supplementary Figures 

 

Supplementary Figure 1:  YOY perch cluster into groups associated with the site from 

which they were captured based on a linear discriminant analysis (LDA) of total-body 

metal concentrations.  Ten fish were sampled from each site A2, A3, A6, D, H, I, J, K and we 

measured concentrations of 15 elements using ICP-MS.  The LDA successfully classified 90% of 

individuals into their respective sites using this multivariate dataset, though discrete separation of 



 

 

groups was difficult to visualize in only two-dimensions.  (a) Classification of fish into sites 

based on LDA along each axis of 15 elements (circles and squares show correct and incorrect 

classifications, respectively).  Axis rotations shown in bottom-left hand corner.  From this 

subplot, site A2 (purple) clusters together in a plane in front of site A6 (red) that connects 

between two points from site H (green).  Site A3 (pink) similarly clusters in a plane behind site I 

(orange).  Site A6 (red) clusters in a plane behind A2 (purple), except for one fish that was 

misclassified as site H.  Site D (blue) is entirely distinct in this perspective, as are all but two fish 

in Site H (green), which were classified as A2 and A6.  For site I (orange), fish cluster in a plane 

at the front of the plot, except for one that was in classified as A3 (pink).  Although more difficult 

to visualize, site J (yellow) is in a separate plane in front of site K (brown), except for two points 

that were associated with K.  Finally, all points in site K were separated in the far-back plane.  

(b–i)  Points of each site are highlighted corresponding with the legend in (a).  n = 77 for each 

panel as 3 fish could not be measured on the ICP-MS.



 

 

 

Supplementary Figure 2:  Shifts in n-3 FA associated with increasing numbers of Cladocera 

relative to Copepoda in each site.  (a) DHA and (b) EPA measured across days and sampling 

lines as percentage of total fatty acids in zooplankton communities.  Zooplankton species were 

identified from horizontal tows conducted midday on July 3 and 4 with a 0.3 m wide, 1 m long 

conical plankton net (250 μm mesh).  Tows were at a depth of 0.5 m for 10 m centered above 

each of three sampling lines running parallel to shoreline and each containing three vertically-

deployed zooplankton traps positioned at a distance of at least 1 and 2 m from those on the same 

and adjacent sampling lines, respectively.  Resulting samples contained 180 mL of lake water and 

were immediately preserved.  We then counted all Copepoda and Cladocera zooplankton 

individuals and expressed a ratio for each site across all samples (n = 8). 



 

 

 

Supplementary Figure 3:  Posterior probability estimates of resource use by YOY perch.  

Use of terrestrial (ϕT), benthic (ϕB), and littoral (ϕL) resource was estimated separately at each of 

eight sites A2 – K.  Solid lines are posterior probability density functions plotted upon histograms 

of posterior estimates.  Sites are sorted in increasing mean NDVI within the entire sub-catchment.



 

 

 

Supplementary Figure 4:  Fit of three isotope mixing model.  Predicted versus observed site-

level ratios of (a) δ
13

C, (b) δ
15

N, and (c) δ
2
H.  Points are average posterior estimates of site-level 

values and observed means in 15 YOY perch across each of 8 sites.  Classical R
2
 = 0.47, 0.81, 

and 0.99 when averaging posterior estimates (as plotted above).  Bayesian R
2
 = 0.45, 0.39, and 

0.58, respectively, though values were highly conservative given the residual error.   



 

 

 

Supplementary Figure 5:  Biplots of isotope data used in mixing models.  The terrestrial, 

benthic, and littoral resources were respectively leaf litter (open circles; n = 40), periphyton (open 

inverted triangles; n = 24), and zooplankton (gray squares; n = 29 for δ
13

C and δ
15

N; n = 40 for 

δ
2
H).  Solid triangles show mean ± s.d. of stable isotope ratios for 120 YOY perch.  Mean ± s.d. 

δ
2
H for water was -66.4 ± 1.2 (n = 24).



 

 

 

Supplementary Figure 6:  Map of study catchments, showing vegetation density and NDVI.  

(a) NDVI (30 m × 30 m pixels) within boundaries of study catchments (black lines) and riparian 

zones 100 m from stream-lake interface (gray curves).  Sites D, H, I, J, and K lie on the northern 

side of the lake in sequential order from the west to east, while A2, A3, and A6 occur on the 

southern side of the lake from west to east. (b)  Site D (most westerly catchment on north side of 



 

 

lake) in summer 2012, showing high vegetation density.  (c) Site A6 (most easterly catchment on 

south side of lake) in summer 2012, showing low vegetation density surrounded by barren and 

exposed rock.  (d) Absolute quantity of vegetation cover in each of 8 sub-catchments (summed 

NDVI) increases with forest area delineated from aerial photography.  (e)  NDVI in 30 m × 30 m 

pixels increases with nearest point estimate of canopy cover in nine sub-catchments (n = 23 – 30 

random points per sub-catchment).



 

 

 

Supplementary Figure 7:  Posterior probability densities of resource use estimated for 

simulated datasets of isotopic composition in YOY fish.  Use of (a) terrestrial (ϕT), (b) littoral 

(ϕL), and (c) benthic (ϕB) resources estimated from a mixing model fitted separately to 99 

simulated datasets.  Mean of simulations denoted by vertical black line intersecting x-axis. 



 

 

 

Supplementary Figure 8:  Model fitted to predict fatty acids (FA) in zooplankton.  (a) EPA, 

(b) DHA, and (c) n-6 FA content in zooplankton at each of 8 sites given values of unobserved 

latent variable representing overall FA composition available to fish [see Supplementary equation 

(8)].  Bayesian R
2
 = 0.83, 0.71, and 0.95, respectively.  



 

 

Supplementary Tables 

 

Supplementary Table 1:  Mean mass fractions ± s.e.m. of eicosapentaenoic acid (EPA) and 

docosahexaenoic acid (DHA) in zooplankton species.  

Species EPA DHA n 

Diaphanosoma birgei 2.76 ± 0.23 3.04 ± 0.48 3 

Holopedium gibberum 6.93 ± 2.05 1.04 ± 0.37 5 

Epischura lacustris 5.12 ± 0.41 10.28 ± 1.33 5 

Zooplankton were collected across five sites in Daisy Lake in 2010.  Both Diaphanosoma birgei 

(Sididae) and Holopedium gibberum (Holopediidae) are Cladocera taxa, whilst Epischura 

lacustris (Temoridae) are Copepoda taxa.  Values are reported in μg fatty acid methyl esters per 

mg of dry weight of tissue extracted.  



 

 

Supplementary Table 2:  Mean characteristics of YOY perch populations sampled in each 

site (± s.e.m.), sorted in in descending order for mean fish weight per site.   

Site Weight (g) Age (days) Growth rate κj
†
 

I 0.491 (0.017) 54 (2) 0.43 (0.38 – 0.49) 

H 0.434 (0.012) N/A 0.37 (0.33 – 0.43) 

J 0.409 (0.013) N/A 0.35 (0.32 – 0.40) 

D 0.379 (0.011) N/A 0.33 (0.29 – 0.37) 

A2 0.314 (0.011) N/A 0.27 (0.23 – 0.31) 

A3 0.303 (0.010) N/A 0.25 (0.22 – 0.30) 

K 0.299 (0.013) N/A 0.25 (0.21 – 0.30) 

A6 0.228 (0.008) 56 (2) 0.19 (0.15 – 0.23) 

Weights were measured on 100 individuals per site, while age was estimated from 6 individuals 

only for sites I and A6 using saggital otoliths (see Supplementary Methods).  Growth rates were 

estimated using the power function (Supplementary equation 13) allowing for growth period to 

vary among sites; 95% CI in parentheses.  
†
Mean (95% CI) for other parameters in 

Supplementary equation (13): α8 = 0.029 (0.001 – 0.062); θ = 0.016 (0.001 – 0.042); σ = 0.12 

(0.12 – 0.13).



 

 

Supplementary Table 3:  Estimated effects for models associated with trophic upsurge 

hypothesis and stable isotope analyses.   

Parameter Mean (95% CIs) 

Supplementary equation (4) tPOC model (R
2
 = 0.47) 

Intercept α1 -1.54 (-2.23 – -0.84) 

Effect of NDVI β1 0.72 (0.03 – 1.44) 

Effect of wetland cover β2 0.77 (0.01 – 1.51) 

s.d. in tPOC σ
(1)

 0.86 (0.42 – 1.89) 

Supplementary equation (5) DOC model (R
2
 = 0.99) 

Intercept α2 1.05 (1.04 – 1.07) 

Effect of tPOC β3 0.02 (0.01 – 0.03) 

Effect of weighted wetland area β4 0.18 (0.17 – 0.20) 

s.d. in DOC σ
(2)

 0.02 (0.01 – 0.04) 

Supplementary equation (6) Bacteria model (R
2
 = 0.95) 

Intercept α3 5.76 (5.45 – 6.04) 

Effect of DOC β5 0.06 (0.02 – 0.14) 

Effect of fluoresence index β6 0.06 (0.02 – 0.11) 

Effect of thirty-nine replicates β7 -0.37 (-0.47 – -0.29) 

Effect of water temperature β8 -0.02 (-0.06 – 0.01) 

Effect of phytoplankton abundance β9 -0.05 (-0.11 – -0.02) 

s.d. among dates σεj 0.18 (0.08 – 0.94) 

s.d. among sites σεi 0.03 (0.01 – 0.08) 

Supplementary equation (7) Zooplankton model (R
2
 = 0.50, classical R

2
 = 0.96) 



 

 

Intercept α4 2.02 (1.56 – 2.36) 

Effect of bacterial densities β10 0.69 (0.10 – 1.32) 

Effect of tPOC quantity β11 -0.48 (-1.96 – 0.15) 

Effect of tPOC quality β11 -0.26 (-0.80 – 0.22) 

Effect of high-quality phytoplankton densities β13 0.26 (-0.26 – 0.63) 

Effect of predation pressure β14 -0.96 (-1.72 – -0.20) 

s.d. in zooplankton σ
(3)

 0.43 (0.14 – 1.41) 

Supplementary equation (8) Fish size model 1 (R
2
 = 0.98) 

Intercept at low predation α5 -1.07 (-1.13 – -0.92) 

Change in intercept with high predation α6 -0.07 (-0.36 – 0.02) 

Effect of zooplankton β15 0.25 (0.07 – 0.49) 

Effect of water temperature β16 0.02 (-0.27 – 0.18) 

Effect of perch density β17 -0.04 (-0.14 – 0.07) 

Effect of overall fatty acids β18 0.23 (0.14 – 0.49) 

Effect of overall fatty acids on EPA γ 0.88 (0.42 – 1.67) 

Effect of overall fatty acids on DHA γ -0.85 (-1.71 – -0.36) 

Effect of overall fatty acids on n-6 FA γ 0.94 (0.52 – 1.78) 

s.d. in fish σi
(4)

 0.33 (0.26 – 0.43) 

s.d. in fatty acids independent of zooplankton σ
(5)

 0.72 (0.37 – 1.63) 

s.d. in EPA 0.42 (0.22 – 0.95) 

s.d. in DHA 0.53 (0.33 – 1.14) 

s.d. in n-6 FA 0.21 (0.03 – 0.69) 

Supplementary equations (9–10) Three-isotope mixing model 



 

 

ϕT,1 0.66 (0.59 – 0.71) 

ϕT,2 0.47 (0.41 – 0.51) 

ϕT,3 0.51 (0.47 – 0.56) 

ϕT,4 0.41 (0.35 – 0.47) 

ϕT,5 0.41 (0.35 – 0.45) 

ϕT,6 0.37 (0.31 – 0.42) 

ϕT,7 0.34 (0.28 – 0.40) 

ϕT,8 0.49 (0.43 – 0.55) 

ϕL,1 0.32 (0.22 – 0.40) 

ϕL,2 0.49 (0.41 – 0.56) 

ϕL,3 0.06 (<0.01 – 0.21) 

ϕL,4 0.58 (0.51 – 0.64) 

ϕL,5 0.59 (0.54 – 0.65) 

ϕL,6 0.51 (0.40 – 0.63) 

ϕL,7 0.45 (0.33 – 0.59) 

ϕL,8 0.41 (0.32 – 0.50) 

ϕB,1 0.01 (<0.01 – 0.09) 

ϕB,2 0.05 (<0.01 – 0.12) 

ϕB,3 0.42 (0.27 – 0.51) 

ϕB,4 <0.01 (<0.01 – 0.04) 

ϕB,5 <0.01 (<0.01 – 0.03) 

ϕB,6 0.12 (0.04 – 0.19) 

ϕB,7 0.21 (0.10 – 0.30) 



 

 

ϕB,8 0.10 (0.06 – 0.14) 

ΔN 2.34 (0.32 – 4.46) 

Δtot 5.86 (5.63 – 6.02) 

τ 2.48 (2.28 – 2.70) 

ωtot 0.06 (<0.01 – 0.17) 

s.d. among sites σϕ 0.10 (<0.01 – 0.54) 

Residual s.d. in δ
13

C σC 0.01 (<0.01 – 0.04) 

Residual s.d. in δ
15

N σN 0.02 (<0.01 – 0.05) 

Residual s.d. in δ
2
H σH 8.67 (5.34 – 12.9) 

Degrees of freedom in Student-t distribution ψ 6.65 (3.28 – 23.4) 

Supplementary equation (11) Change in ϕT with catchment land cover (logit scale) 

Mean terrestrial support across sites αT -0.22 (-0.46 – <-0.01) 

Effect of NDVI βT,1 0.34 (0.15 – 0.58) 

Effect of catchment size βT,2 -0.28 (-0.53 – -0.12) 

Effect of wetland area βT,3 0.27 (0.11 – 0.42) 

Interaction of NDVI and wetland area  βT,4 0.45 (0.26 – 0.69) 

All covariates described in Supplementary Methods and were standardized to a mean of zero and 

s.d. of one in regressions so that effects are directly comparable.  Bolded effects (β, γ) do not 

overlap zero.  We report a Bayesian R
2
 as a measure of model fit (83).  For the zooplankton 

model (Supplementary equation 7), R
2
 was highly conservative because of relatively large 

residual error; classical R
2
 was 0.96 when averaging posterior estimates of site-level abundance.



 

 

Supplementary Table 4.  Estimated effects in final models predicting Ba:Ca and Sr:Ca in 9-

10 perch from each of 8 sites [see Supplementary equation (13)].   

 Ba:Ca Sr:Ca 

Effect Mean 95% CIs Mean 95% CIs 

Water molar ratio (β22) 0.07 0.03 – 0.10 0.05 0.03 – 0.06 

Fish mass (β23) -0.14 -0.18 – -0.10 -0.07 -0.09 – -0.05 

Wetland area (β24) 0.03 -0.01 – 0.07 0.03 0.01 – 0.04 

Intercept (α9) -0.91 -0.94 – -0.87 1.63 1.61 – 1.64 

Residual error (σ) 0.16 0.14 – 0.19 0.07 0.06 – 0.09 

Model predictors were water molar ratio (mmol mol
-1

), fish mass (g), and weighted wetland area 

(ha).  All effects were standardized to a mean of zero and s.d. of one, so are directly comparable.  

Bolded effects do not overlap zero.  Bayesian R
2
 = 0.44 and 0.54 for the Ba and Sr models, 

respectively.



 

 

Supplementary Notes 

 

Supplementary Note 1:  Alternative models explaining variation in biomass stocks 

Trophic cascades   

There was weak evidence for trophic cascades that might explain the accumulation of biomass at 

different levels of the food web.  Specifically, we tested whether biomass stocks of lower food 

web components were regulated by upper-level components.  Under a model of trophic cascades, 

we expected that the absence of top-predators in some sites promoted: (i) a high biomass stocks 

of YOY perch, which (ii) reduced biomass of zooplankton, and subsequently (iii) increased 

bacterial densities.   

Our statistical models already tested conditions (i) and (ii) of the trophic cascade 

hypothesis (Supplementary Table 3).  For YOY fish, we found that their biomass did not increase 

as fewer top predators were caught in each site (95% CI for effect: -0.02 – 0.36), although our 

sampling was relatively limited.  Similarly, trophic cascades were not the dominant force 

structuring zooplankton communities when we considered condition (ii).  Predation pressure 

upon zooplankton by planktivorous fish was certainly important in reducing biomass trapped at 

each site (95% CI: -1.72 – -0.20), but this effect overlapped with the bottom-up effect that 

increased bacterial densities (95% CI: 0.10 – 1.32).  Finally, we could not include zooplankton 

abundance in our model of bacteria densities because parameter estimates for the associated 

effect were correlated with water temperatures (r >0.80).  Replacing water temperatures in 

Supplementary equation (6) with the total amount of zooplankton biomass caught at each site, 

however, did not improve model fit or reduce bacterial densities (95% CI for effect -0.03 – 0.07, 

model R
2
 = 0.89).  The positive effect of DOC concentrations was unchanged (95% CI 0.02 – 



 

 

0.13).  Our findings are consistent with nearby lakes where there is little evidence that 

zooplankton can control phytoplankton biomass (1). 

 

Variable hatching date:   

Weights of YOY perch did not vary among sites simply because of site-specific differences in 

hatching dates.  Our data supported this claim in two ways. 

Otoliths:  Microanalysis of otoliths revealed that fish were not larger simply because they 

were older.   Six fish were randomly selected from the sites where we recorded the largest and 

smallest YOY weights.  One sagittal otolith from each of the twelve YOY was then prepared 

under a compound microscope following standard methods for age determination (2).  Using the 

hatch check as a reference point, daily increments between the hatch check and edge were 

counted 2–4 times along as many growth axes as possible (2).  The most reliable and/or mean 

increment count was recorded as total age by a trained observer (S. Campana, Otolith 

Technologis, Stillwater Lake, NS).  We did not inform the observer of the sites from which fish 

were selected so as to eliminate any possible bias. 

Fish differed in size but not age between sites based on two-sample t-tests comparing 

mean values.  The mean weight ± s.e.m. of the six YOY in site I was 0.45 ± 0.03 g versus 0.26 ± 

0.03 g in site A6 (t10 = -4.43, p = 0.001).  However, the mean age of YOY of did not differ 

between sites I and A6, with means ± standard errors of 54 ± 2 days and 56 ± 2 days, respectively 

(t10 = 0.59, p = 0.571). 

Our findings are supported from many observational studies on the life history of larval 

perch.  First, hatching and spawning usually occurs within a tight window of one to two weeks 

within a region (3–6).  However, aging of otoliths suggests that such differences are absent 

within the small lake that we study.  This likely arises because YOY fish all originate from a 



 

 

common stock.  Specifically, spawning typically occurs at a few sites, where the rate of egg 

development and timing of hatching are likely to be very similar (7).  These larval populations 

then group almost immediately into the pelagic zone, where they continue development for 

approximately a fortnight, until randomly dispersing across a broad range of littoral sites (7).  

Heterogeneity in the littoral sites drives ensuing variation in fish size and fish spent sufficiently 

long in these sites between hatching and capture to differ in their trace metal signatures 

(Supplementary Fig. 1).   Finally, local water temperatures exert critical controls over rates of egg 

development and timing of hatching (3, 8), but these did not vary across our sites during the first 

week of spring measurements (May 23–29), as determined by overlapping 95% CIs in a model 

predicting mean daily water temperatures at each site. 

Growth modelling:  Mean growth rates of fish estimated at each site from our data still 

differed when we allowed hatching dates, and hence growth period, to vary.  We demonstrated 

this by separately fitting three of the most widely-used fisheries growth models to the YOY 

weight data: the von Bertalanffy growth model (VBGM), the Gompertz curve, and a simple 

power model that does not assume asymptotic growth like the former two approaches (9–12).  

The VBGM is a simplification of mechanistic bioenergetics models that can be estimated 

statistically (13, 14) and has been shown to fit the growth of yellow perch in Ontario lakes better 

than alternative models (15).  Broadly, the VGBM predicts that growth rate (i.e. change in mass 

over time) arises from the difference between energy assimilation and loss, which are a function 

of weight Wt at time t (13).  The integrated form of this function can then be used to predict the 

mean growth of each individual fish i at site j between time = 0 (and W = 0) to time = t as: 

Wijt = W∞[1 – e
-kjt(1 – d)

]
1/(1 – d)

,     (1) 

where W∞ is the estimated upper asymptote of body mass for a YOY perch, kj is an estimated rate 

parameter for energy loss that determines growth differences among sites, and d is an estimated 



 

 

parameter that scales consumption with body size and is likely to be relatively invariant among 

sites because it captures fundamental metabolic processes governing biomass production and 

maintenance across taxa (e.g. 14).  The Gompertz model is similar to the VGBM but typically 

differs in estimates of its upper asymptote (9) and takes the form: 

Wijt = W∞e
-ge-rjt

,      (2) 

where e
-g

 is the estimated proportion of growth achieved at t = 0, which should be identical 

among sites given that individuals are likely derived from a common pool of eggs before 

colonizing different sites (see above), and rj is an estimated rate of exponential decline in growth 

with age.  Finally, the power function assumes that growth increases exponentially over time 

given an estimated scaling coefficient κj and exponent θ and estimated size α8 at t = 0:  

Wijt = α8 + κjt
θ
.      (3) 

We then tested whether we could eliminate differences in growth rates among sites, i.e. 

overlapping parameter estimates, by introducing variation into hatching dates.  We did so by first 

assuming that perch grew for 60 days prior to measurement, because they hatched on May 7 

2012.  Field data from our study site do indicate that perch spawn in April shortly before our 

assumed hatch date (16), and eggs have been shown elsewhere to hatch in ca. 15 – 25 days (3–6).  

We then allowed for large variation in hatching period by scaling values between 30 and 90 

based on average fish size in each site.  Thus, sites with the largest fish were assumed to have 

grown the longest (90 days) and sites with the smallest fish were assumed to have grown the least 

30 days).  As discussed above in relation otoliths, evidence points to a tight window of hatching 

and spawning within regions, which never exceed the 60 day difference in the same lake we have 

used in our analyses (3–6).  The exactness of the hatching date is also irrelevant for our aims 



 

 

because we test whether relative rather than absolute variation among sites in hatching dates can 

explain observed differences in growth.   

We fitted each model described by Supplementary equations (1–3) separately using 

MCMC sampling described in Supplementary Methods.  We assumed fish weights were drawn 

from normal distributions with site-level means equal to Supplementary equations (1–3) and 

estimated standard deviations.  All regression coefficients were given uninformative priors and 

we calculated 95% CIs from a subset of simulations once MCMC chains converged.  We then 

compared support among models using log-likelihoods, with higher values being more strongly 

supported.  There was no need for information criterion that penalize model fit based on number 

of parameters because each model had the same number of estimated parameters.  Importantly, 

our aim was not to model individual growth rates but simply to estimate mean site-level 

parameters and test whether they differed among sites, as measured by non-overlapping 95% CIs. 

 We found that the power function was the most strongly supported model as it had the 

highest log-likelihood by >2, on average, compared with the VBGM, which was the next most 

supported model.  The model predicted that the growth parameter κj in Supplementary equation 

(3) varied from 0.38 – 0.49 (95% CI), where fish were hatched the longest and were also the 

largest in size, to 0.15 – 0.23 (95% CI) in the site where fish had been hatched for the shortest 

period.  This clearly shows that fish were larger because of their growth rates not growth periods 

(Supplementary Table 2).



 

 

Supplementary Methods 

 

Estimating quantity of terrestrial biomass 

We estimated terrestrial biomass in each site from satellite imagery.  We obtained eleven Landsat 

5 TM images from March 27 to October 5, 2011 that were free of cloud cover.  The normalized 

difference vegetation index (NDVI) was calculated within 30 m × 30 m pixels for each image 

after determining “top of atmosphere” reflectance values, which allow NDVI comparison among 

images (17).  NDVI is proportional to the absorption of photosynthetically active radiation, and 

so is an indicator of vegetation density (18).  Values approaching 1 indicate high vegetation 

density, such as in closed-canopy forest, while values approaching -1 indicate barren land with 

little plant cover.  We worked with 2011 images because organic matter produced and 

accumulated during this year, such as litterfall, will be washed into the streams that drain each 

site the following spring, and so best capture terrestrial subsidies to aquatic food webs in 2012.  

The presence of striping patterns due to a failure of the Scan Line Corrector aboard the Landsat 7 

satellite in 2003 also prevented complete interpretation of composite 2012 Landsat 7 images, but 

this was not an issue with Landsat 5, which terminated routine acquisitions after 2011. 

For each site, we derived a measure of riparian vegetation density for use in our analyses.  

We combined the multiple Landsat images using maximum value compositing (19), which only 

retains the maximum NDVI value recorded in each pixel among the eleven images.  This has the 

advantage of minimizing atmospheric properties, such as clouds and water vapor, which reduce 

NDVI estimates (20).  We then averaged NDVI values across all pixels within 100 m of each 

lake-stream interface (Supplementary Fig. 6a).  All spatial data manipulation and analyses were 

conducted using ArcGIS 9.3 (ESRI, Redlands, CA). 



 

 

Landsat estimates correlated closely with three independent measures of vegetation cover.  

First, NDVI estimates from Landsat summed within each site increased with NDVI calculated 

from high-resolution (0.4-m) images (r >0.98 at 0.4–30.0 m resolutions), which were obtained in 

2007 using a Leica ADS40 Airborne Sensor (21).  The Landsat estimates also increased with 

forest area (r = 0.92; Supplementary Fig. 6d), delineated from a 1:40 000 m aerial photograph 

taken in 2003 (22).  Finally, NDVI estimates from Landsat increased with canopy cover 

(Spearman’s rank correlation, ρ = 0.61, p < 0.001, n = 260; Supplementary Fig. 6e), measured in 

2008 using a spherical densitometer at between 23 to 30 random sampling points within 100 m of 

the lake-stream interface in nine sub-catchments (22), seven of which we study here.  

 

Quality of organic OM at different trophic levels 

POC and DOC:  POC quality was calculated as the ratio of total organic to total inorganic matter 

trapped across the eight sediment tubes at a site.  Inorganic matter was simply the amount of 

mass that was not lost during combustion of organic material (see main text).   

We also estimated DOC quality for each water sample using absorbance and fluorescence 

spectroscopy.  Absorbance scans were taken across a wavelength range of 220 – 600 nm with a 

Varian Cary 60 UV-Vis spectrophotometer (Agilent Technologies, Santa Clara, CA).  Three-

dimensional fluorescence scans were performed by measuring emissions from 300 – 600 nm in 2 

nm steps at 5 nm increments in excitation from 220 – 450 nm using a Cary Eclipse fluorescence 

spectrophotometer (Agilent Technologies, Santa Clara, CA).  The resultant fluorescence 

excitation-emission matrices were instrument corrected, and adjusted for inner filter effects using 

sample absorbance scans.  We then compared differences in DOC structure among sites by 

calculating the fluorescence index (FI) as the ratio of emission intensity observed at 470 nm 

divided by the intensity observed at 520 nm, both at an excitation of 370 nm (23).  FI is a widely-



 

 

used index of fluorescence and absorbance properties (24), whereby increasing values suggest 

less aromaticity and a smaller degree of conjugation (23). 

Zooplankton:  We estimated the quality of zooplankton available to fish in each site from 

their composition of fatty acids (FA).  Animals cannot entirely synthesise n-3 and n-6 FA 

because they lack the desaturase enzymes required for inserting a double bond into the n-3 or n-6 

position (from the methyl end) of n-9 chains (25).  Further, the ability of most animals to 

elongate and desaturate 18 carbon polyunsaturated FA to 20 or 22 carbon long chain 

polyunsaturated FA (LC-PUFA) is often inadequate (26).  Thus, the growth, survival, and fitness 

of zooplankton and fish depends on obtaining LC-PUFA, such as eicosapentaenoic acid (EPA; 

20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), from their diets (27, 28).   

We measured the FA composition of zooplankton samples as methyl esters on a gas 

chromatograph following methods outlined in McMeans et al. (29).  Fatty acid methyl esters 

were quantified from the total lipid extract using a Supelco SP-2560 column (Sigma-Aldrich 

Corp., St. Louis, MO) on a Hewlett Packard 6890 gas chromatograph (splitless injection), and 

then identified using a 37-component standard (Supelco 47885-U).   

There is still uncertainty as to the specific FA required by fish and how these might vary 

with age and species (30), so we defined high-quality forage in terms of a high relative 

abundance of EPA, DHA, and n-6 FA.  EPA and DHA account for between 68 – 78% of all n-3 

FA measured within each site, while no specific n-6 FA were similarly dominant.  Smith et al. 

(31) found that silver perch (Bidyanus bidyanus) grew faster when their diets were supplemented 

with the n-6 linoleic acid (LNA; 18:2n-6), and Brown et al. (32) speculated that LNA was critical 

for the development of yellow perch (Perca flavescens).  Other n-6 fatty acids, such as 

arachidonic acid (20:4n-6), have been shown to promote the growth of marine species, such as 

juvenile turbot (Scophthalmus maximus) (33), and are rapidly accumulated upwards through 



 

 

freshwater food webs (34).  Similarly, the n-3 FA EPA and DHA are also nutritionally important 

for fish (30, 34), and were found to be the most abundant n-3 FA in a study of YOY perch (35), 

including within 24 YOY collected from five sites at Daisy Lake in 2010.  EPA itself promotes 

development and growth, and maintains immunity to disease and pathogens (36–38).   

 

Measures of habitat quality 

Water temperature:  Temperature affects the growth of bacteria (39–41), zooplankton (42), and 

YOY perch (e.g. 43, 44).  Thus, we anchored three StowAway TidbiT water temperature loggers 

(Onset Computer Corp., Bourne, MA) in each site prior to any biotic sampling, and included the 

average of water temperatures recorded every 15 minutes from May 23 to June 24 2012 in our 

statistical analyses. 

Fish predation pressure:  We measured relative differences in predation on zooplankton 

communities and YOY perch by sampling the entire fish community at each site on July 12 and 

13 using standardized multimesh gill nets (45).  This method uses benthic monofilament gillnet 

gangs composed of 12 panels (each 2.5 m long × 1.2 m deep) of geometrically increasing mesh 

sizes (10–110 mm), in order to capture fish without any size dependence.  We set nets outwards 

perpendicular from the shoreline starting at a depth of 1.0 m in order to capture fish activity 

within our focal study areas.  The nets were deployed between 18:00 and 20:00 hours and were 

retrieved the next morning between 08:00 and 10:00 hours, after which they were immediately 

processed.  We identified and counted each individual and measured total body length.  The 

resulting number of individuals caught for each species is ultimately proportional to the species’ 

population size and so measures relative abundance (45).   

 

Statistical analysis of trophic upsurge hypothesis 



 

 

POC:  We tested if POC captured beneath each site increased with riparian vegetation.  We 

summed the quantity of POC captured among the eight sediment traps at each site to derive a 

total POC (tPOC; g) value.  POC ranges from 1.5-250 μm in size so should capture transfer of 

terrestrial OM into DOC (<1.5 μm).  We assumed that tPOCi in each site i followed a log-normal 

distribution and varied with the quantity and quality of OM exported from land, respectively 

measured by the density of riparian vegetation within 100 m of the lake-stream interface (NDVIi) 

and the percent of the catchment area covered by wetland (Wi, square-root transformed), which 

was measured from 1:40 000 aerial photographs taken in 2003 (22):   

tPOCi ~ lnN(μi
(1)

, σ
(1)

),      

μi
(1)

 = α1+ β1NDVIi + β2Wi,     (4) 

where α1 is the mean estimated tPOC across sites and σ
(1)

 is the estimated standard deviation 

(s.d.).  Biogeochemical processes within wetlands influence nutrient ratios and particle sizes of 

POC exported from land (46), so their relative abundance is a good indicator of POC quality.  

 DOC:  Our next step was to test whether DOC increased with POC.  Most of this DOC is 

likely derived from larger POC that has been degraded within wetlands and organic soils (47, 

49), similar to processes occurring in our lake deltas and ultimately consistent with the landscape 

to POC to DOC pathway in our trophic upsurge hypothesis.  POC is an integrated measure 

sampled over the entire period of May 22 to June 24, and so we averaged the eight DOC samples 

collected per site during this time period so their values were comparable.  Averaging has the 

additional benefit of reducing temporal variability in DOC.  DOC can vary by several orders of 

magnitude at our site due to short-lived pulse events that occur over a period of hours and alter 

the water chemistry of stream outflows (49).  At one site, however, we did observe extremely 

high values of DOC even after averaging across samples; values in the upper quartile ranged 

from 5.4 – 8.9 versus 2.8 – 3.4 mg L
-1

at all other sites.  The site was located beneath the largest 



 

 

wetland complex, so rather than remove this outlying observation from our analysis, we 

accounted for the wetland influence in our model.  The influence of wetlands on DOC will also 

depend on their distance to shoreline because of within-stream degradation of dissolved OM, 

which becomes increasingly important as wetlands are further from the littoral zone and streams 

retain water for longer (50, 51).  Therefore, we derived a distance-weighted measure of wetland 

area WAi by multiplying absolute wetland area in each catchment by the shortest distance from 

the wetland boundary to lake shoreline (Di), expressed relative to the shortest distance observed 

among sites, i.e. 
1

0

1
DmaxD







iDi .  We then modelled mean DOCi in each site i as a function of 

tPOCi and WAi: 

DOCi ~ lnN(μi
(2)

, σ
(2)

),      

μi
(2)

 = α2 + β3tPOCi + β4WAi,     (5) 

where α2 is the mean estimated DOC across sites and σ
(2)

 is the estimated s.d.  We did not include 

POC quality into Supplementary equation (5), as measured by the ratio of organic to inorganic 

POC, because it was positively correlated with WAi, as expected [r = 0.63; p = 0.047 for one-

tailed test; r >0.70 between parameter estimates when included in Supplementary equation (5)].   

The benefit of incorporating WAi is that it also accounts for the fact that wetlands are 

direct sources of DOC, as organic soils are in contact with surface waters and release large 

amounts of material during snowmelt and precipitation events (52, 53).  This spatial-dependence 

explains why replacement of WAi by Wi results in a much less supported model, as measured by 

the deviance information criterion (DIC; ΔDIC = 42; ref. 54).  By contrast, we did not consider 

the influence of upland forests because their soils often lack a hydrological connection (55), and 

their vegetation and soils directly produce negligible quantities of DOC (56, 57).  For example, 

root exudation releases only 2 – 4% of photosynthate production and most is rapidly assimilated 



 

 

by microbes (58).  Similarly, POC may be much less sensitive to distance of the wetland from the 

shoreline because it is derived from more sources than DOC, including riparian vegetation along 

the length of the discharge stream.  POC is also controlled largely by rainfall events, as material 

must be washed into drainage streams before it is deposited in littoral zones (59), and this occurs 

irrespective of distance from the lake shoreline.  Consequently, replacing Wi in Supplementary 

equation (4) by WAi had less supported (ΔDIC = 5).   

 Bacteria:  Our interest was in testing whether bacterial densities increased with DOC 

concentrations in each site.  However, rather than generate a site-level measure of bacterial 

densities from a single “snap-shot” in the field, we counted the number of bacteria in 9 – 10 water 

samples per site across different dates and modelled these as a Poisson distributed variable with 

rate λij for each site i on sampling date j.  We did not model these data from a normal distribution 

because this generates continuous-valued expectations and our observations were inherently 

discrete counts.  Our approach then allowed us to deconstruct λij into the sum of an estimated site 

Bi and date Bj component, from which we could relate Bi to the median DOC concentration at 

each site.  We used medians to minimize the leverage associated with flash DOC events that 

positively skewed means.  We also accounted for variation in DOC quality using the mean 

fluorescence index Fi at each site.  Parameter estimates associated with other fluorescence 

measures, such as the freshness and humification indices (24), were closely correlated with DOC 

when included in our model (r >0.80), so were not considered here.  Two other important 

considerations of bacterial densities that we accounted for were water temperatures averaged 

across the period during which bacteria were sampled (Ti) and potential competitive interactions 

with phytoplankton, measured as the mean of total phytoplankton concentrations in each site 

(PPi).  Our final model for λij was: 

ln(λij) = Bi + Bj, 



 

 

Bi = α3 + β5ln(DOCi) + β6Fi + β7i + β8Ti + β9PPi + εi,      (6) 

where Bj represents random variation among sampling days and is estimated from distribution 

that is N(0, σ), with σ also estimated, α3 is the mean estimated count across sites and dates for 40 

replicates, β7i is the change in the mean for counts derived from only 39 replicates (n = 3), and εi 

is the variance in Bi, which is calculated by propagating the error associated with site-level means 

of DOCi, Fi, and PPi. 

 Zooplankton:  We tested whether the biomass of zooplankton (Zi) trapped in each site i 

increased with bacterial densities.  We summed bacterial counts (Bi) across dates within each site 

i to have a measure of potential OM quantity over the period of zooplankton growth at each site, 

and scaled values where necessary onto a common 40 observations (see above).  We also 

included the quantity of tPOCi, which animals can directly ingest (60, 61).  To approximate food 

quality, we used the ratio of organic to inorganic POC (tPQi).  We also averaged the summed 

abundances of Bacillariophyceae, Chlorophyceae, and Cryptophyceae across dates within each 

site (Qi).  These groups synthesize key fatty acids that supplement high-quality diets for 

zooplankton (28, 62), as well as provide an autochthonous source of OM to be transferred 

upwards through the food web.  Finally, zooplankton biomass may differ among sites due to 

predation pressure.  We therefore summed the number of planktivorous fish caught within each 

site across the two dates on which fish communities were gillnetted (PRi).  Most individuals were 

yellow perch (692 of 736), and we removed those >95 mm in length because they begin to shift 

their diet at this size towards small fish and pelagic animals at our site (16).  We then assumed 

that Zi followed a log-normal distribution, with an estimated s.d. σ
(3)

 and mean μi
(3)

: 

μi
(3)

 = α4 + β10Bi +  β11tPOCi +  β12tPQi + β13Qi + β14PRi,    (7) 

where α4 is the mean estimated mass across sites. 



 

 

 YOY Fish:  We tested the prediction that the fresh weight of YOY perch (Mi) increased 

with total amount of zooplankton biomass Zi in each site i.  As with bacterial densities, it was not 

possible to obtain a single perch “weight” at each site.  Rather, we measured sizes of individual 

fish l in each site i (Mil) and decomposed this into the sum of a site-level mean (Mi) plus random 

variation associated with each individual l in that site (υil).  We then related Mi to Zi, the mean 

water temperature during the time of fish growth Ti, and the number of perch <100 mm long 

caught from our gillnet sampling (Di), to account for effects of density-dependence on growth 

(63, 64).  Growth may also be influenced by risk of predation (16, 65–67).  Across both sampling 

events, we caught only one individual of walleye (Sander vitreus), pike (Esox lucius) and 

smallmouth bass (Micropterus dolomieu) within gillnets at four of the eight sites, and only 4 – 6 

individuals at the other sites.  Given the low absolute catch, we coded our data into a binary 

variable of relatively low (=1 individual) and high (>4 individuals) predator abundance Pi and 

added this to our model. 

 We considered the effect of food quality on fish growth as the percentage of fatty acid 

composition in each site comprised by EPA, DHA, and n-6 FA (FAi).  Given the strong 

correlations among these three classes of FA (|r| > 0.87-0.91), we could not use all of them 

directly as predictors of Mi.  Rather, we used a latent variable approach that assumed Mi was 

influenced by an unobserved variable representing overall FA composition at each site ηi, which 

could then be related to each of the three observed FA classes (68).  EPA and n-6 FA were 

modelled from normal distributions, while DHA was modelled from a log-normal, and all had 

means estimated as linear products of ηi and estimated variances.  We did not group EPA and 

DHA into one category of n-3 FA because they were negatively correlated (r = -0.91), reflecting 

associations with different zooplankton communities (Supplementary Fig. 2).  Cladocera 

preferentially accumulate EPA, while Copepods accumulate DHA (69), and the latter did have 



 

 

greater mass fractions of DHA in our sites (Supplementary Table 1).  This dependency of FA on 

zooplankton communities also introduced correlation between ηi and zooplankton biomass Zi.  As 

zooplankton communities became heavier at our site, we found that the ratio of Cladocera to 

Copepod species increased (r = 0.66), and so the mass fraction of DHA decreased while EPA 

increased (r = -0.59 and 0.80, respectively).  To account for this, we let ηi be equal to FA 

composition independent of zooplankton biomass ξi plus Zi.  We then randomly sampled ξi from 

a normal distribution with mean centered at zero and estimated s.d., and modelled Mil as: 

Mil = Mi + υil, 

Mi = α5 + β15Zi +β16Ti + β17Di + α6Pi + β18ξi,    (8) 

where υil is the variation among individuals in each site and is estimated from a distribution that 

is ~ N(0, σi
(4)

), with σi
(4)

 also estimated, and α5 and α5 + α6 are the mean sizes among sites at low 

and high predation, respectively.  We let each FA class be ~ N(γηi, σ), with separately estimated γ 

and σ, ηi = ξi + Zi, and ξi ~ N(0, σ
(5)

), with σ
(5)

 also estimated.  All of EPA, DHA, and n-6 FA   

were well-predicted by the resulting models, demonstrating that our latent variable was 

successfully parameterized from observed data (Supplementary Fig. 8). 

 

Statistical analysis of allochthonous support 

Our mixing model assumed that the ratios of δ
13

C, δ
15

N, and δ
2
H in fish i from site j were each 

drawn from a normal distribution with estimated mean μj and s.d. σj.  Although the observed δ
13

C 

ratios (CδC,ij) were right-skewed, we accounted for this by assuming values were drawn from a 

Student's t-distribution.  Small samples from symmetric long-tailed distributions, such as the t-

distribution, can appear asymmetric without the underlying distribution being skewed, and there 

was no reason to believe that was the case for δ
13

C.  The t-distribution is ultimately analogous to 

a normal distribution that has been compounded with heavy tailed variance that is shortened as 



 

 

the estimated degrees of freedom χ increase.  Given this formulation, we assumed that μδC,j could 

be described by the relative contributions of the mean terrestrial (TδC,j), littoral (LδC,j), and 

benthic (BδC,j) sources of δ
13

C in each site j: 

CδC,ij ~ Stt(μδC,j, ψδC,j, χ), 

μδC,j = ϕT,jTδC,j + ϕL,jLδC,j + ϕB,jBδC,j.   (9) 

The coefficients ϕT,j, ϕL,j, and ϕB,j represented the estimated proportional use by fish of 

terrestrial, littoral (i.e. vertically-migrating zooplankton in the near-shore photic zone), and 

benthic resources at each site j, respectively.  To ensure that the ϕ’s summed to one, we inversely 

transformed parameters from log-ratios centered on geometric means as in Solomon et al. (70).  

We then propagated the uncertainty into σδC,j associated with the observed δ
13

C sources TδC,j, 

LδC,j, BδC,j, which were averaged in each site j.  We did so by summing the product of the 

estimated effects and the observed variances of their respective covariates, and added this to an 

estimated value of εδC that was sampled from a normal distribution with mean of zero and 

estimated s.d. σC to generate ψδC,j.  σδC,j scales with ψδC,j and is equal to [ψδC,jχ/(χ – 2)]
0.5

. 

For estimating the δ
15

N ratio (CδN,ij), we used the same approach as for δ
13

C but also 

considered that δ
15

N becomes progressively enriched as trophic levels increase (71).  We 

accounted for this by adding Δtot to Supplementary equation (9) and estimating CδN,ij from a 

normal distribution as: 

CδN,ij ~ N(μδN,j, σδN,j), 

μδN,j = ϕT,jTδN,j + ϕL,jLδN,j + ϕB,jBδN,j + Δtot.    (10) 

We estimated Δtot as the product of the estimated per-trophic-level isotopic enrichment of N (ΔN) 

and trophic position of YOY perch (τ), defined as trophic levels above primary producers (70): 

Δtot ~ N(μΔtot, σΔtot), 



 

 

μΔtot = ΔN × τ, 

where estimates of ΔN and τ were constrained with data.  ΔN was drawn from a distribution that 

was ~N(2.52, 1.46), which is based on data from 40 taxa (71), and τ was estimated from a 

distribution was ~N(2.5, 0.1), based on data for juvenile and YOY fish from Wisconsin (70).  We 

used the estimated values of ΔN and τ and their observed standard deviations to calculate σΔtot as 

[(1.46/ΔN)
2
 + (0.1/τ)

2
]μΔtot

2
, so σΔtot was not directly estimated.   

 Finally, we estimated δ
2
H ratios (CδH,ij) using Supplementary equation (9), but considered 

that measured values were influenced by water consumed in the diets of fish (72).  We 

specifically estimated the contribution of dietary water to δ
2
H fractionations by measuring the 

ratio of δ
2
H in water at each site (WδH,j).  Water samples were collected on May 28, June 7, and 

June 18 using protocols described in main text and stored at 4 ºC until analysis on a cavity-ring-

down laser spectrometer (73).  We then estimated the proportion of δ
2
H in YOY perch that was 

derived solely from environmental water (ωtot,j) as one minus the proportion of δ
2
H derived from 

diet, accounting for the fact that diet, and hence water consumption, will vary among sites by 

estimating j different values.  We also allowed the estimated per-trophic-level contribution of 

water ω to decline with increasing trophic levels τ above the dietary end members.  The littoral 

end member LδH,j occurred at a different trophic level than TδH,j and BδH,j, which were primary 

producers, so we estimated the trophic position of fish relative to that of zooplankton τzoo and a 

third of the total dietary contribution towards δ
2
H was attributed to LδH,j.  τzoo was itself estimated 

from a distribution was ~N(1.75, 0.2), averaging data for both herbivorous and carnivorous 

zooplankton from Wisconsin and allowing for a relatively larger s.d. (70).  We then estimated 

ωtot,j from a Beta distribution, as values varied between 0 and 1, with a mean equal to:

    zoo1
3

11
3

21,tot





j

.  The s.d. of the Beta distribution incorporated uncertainty 



 

 

in ω, τ, τzoo based on generalized equations for propagating normally-distributed errors (74); see 

model Supplementary Software 1.  ω had a mean of 0.12 and s.d. of 0.02, as used in previous 

isotopic mixing models for fishes, including yellow perch (72, 75).  CδH,ij was then expressed as: 

CδH,ij ~ N(μδH,j, σδH,j), 

μδH,j = ωtot,jWδH,j + (1 – ωtot,j)(ϕT,jTδH,j + ϕL,jLδH,j+ ϕB,jBδH,j).  (11) 

Observed variance in WδH,j was propagated along with that of TδH,j, PδH,j, and BδH,j and added to 

the estimated value of εδH to calculate σδH,j. 

 To test whether allochthonous support of fish changed with land cover, we estimated ϕT,j 

in our mixing model (Supplementary equations 9–11) as a direct function of the mean NDVI 

value within each catchment VDj and catchment area Aj.  This allowed us to separate the amount 

of variation in resource use explained by catchment area versus relative land use (i.e. vegetation 

density).  Small catchments may weakly influence consumer resource use because they always 

export relatively little organic matter, irrespective of vegetation density, and vice versa.  

Wetlands are also a source of organic matter and nutrients (48, 76, 77), so the relative cover of 

wetlands in each catchment WCj may explain some of the variation in terrestrial resource use 

observed in fish.  Finally, the effect of VDj across the entire catchment may depend on soil 

wetness.  Soils that are more waterlogged export greater quantities of OM to surface waters 

during periods of high runoff, and this increases as more soil is covered in vegetation (78).  

Therefore, in addition to the independent effects of VDj and WCj, we expected additional OM to 

be provided to sites where both variables were large because of this interaction during periods of 

high runoff (77, 78).  WCj should directly capture soil wetness because the presence of wetlands 

– by their very definition – indicate both soil types and local topographies that have a greater 

potential for becoming waterlogged.  We then expressed ϕT,j on a logit-scale to constrain values 

between zero and one: 



 

 

logit(ϕT,j) = αT + βT,1VDj + βT,2Aj + βT,3WCj + βT,4VDjWCj + εj,  (12) 

where αT was the estimated level of terrestrial resource use observed among sites at the mean 

values of the covariates (i.e. mean ϕT,j on logit-scale) and εj was normally-distributed residual 

error with estimated s.d. σϕ.  We did not use NDVI values solely from the riparian area because 

ϕT,j also depends on dissolved organic matter, which we show increases with a measure of 

absolute area, i.e. weighted wetland area (see text associated with Supplementary equation 5 for 

discussion). 

 

Model estimation 

Three MCMC chains of at least 42 000 iterations were simulated for each model, with a burn-in 

period of at least 40 000 runs.  We assigned relatively uninformative priors for all regression 

coefficients (i.e. α’s, β’s, and γ’s) and standard deviations (i.e. σ’s), which were ~ N(0, 100) and 

U(0, 100), respectively.  For ϕL and ϕB coefficients in the three-isotope mixing model 

(Supplementary equations 9–12), we placed uniform priors on the interval (-3, 5), which are 

uninformative in the centered log-ratio space into which ϕ’s were transformed for estimation (70, 

81).  The estimated degrees of freedom parameter χ for the δ
13

C model also had a uniform prior 

but on the interval (2, ∞).  All covariates were standardized to a mean of zero and s.d. of one so 

that their estimated coefficients were directly comparable.  To infer effects, we calculated 

posterior means and 95% credible intervals (CIs) for each parameter by drawing a subset of at 

least 500 simulations. 

We used three approaches to verify convergence of our model. First, we visually assessed 

all chain traces to ensure proper mixing of posterior distributions. Second, we calculated the 

potential scale reduction factor 


R for each parameter from each subset of simulations.  


R



 

 

predicts the extent to which a parameter's confidence intervals will be reduced if models are run 

for an infinite number of simulations.  All our values were less than 1.1, which implies that the 

model has approximately converged and MCMC chains have mixed (82).  Finally, we also 

ensured that the effective number of simulation draws, neff, a measure of the independence 

amongst the subset of simulations, always exceeded 100 (82).  We summarized overall model fit 

by calculating a Bayesian R
2
 at the level of our focal response variable, analogous to the 

proportion of variance explained by a model in classical linear regression (83). 

 

Site affinity of fish 

We also tested if fish reflected the chemistry of the sites from which they were collected.  Many 

previous studies have used the molar ratios of elements concentrated within otoliths and other 

hard tissue as environmental tracers of fish movements and habitat affinity (e.g. 84–87).  Thus, 

we calculated Ba:Ca and Sr:Ca ratios in each fish, and tested whether each ratio ri for fish i from 

site j increased with the same ratio measured in water wj.  We assumed that ri was derived from a 

log-normal distribution with mean µi and estimated σ, and fitted the following using JAGS (as 

described above for the trophic upsurge models): 

µi = α7 + β25ln(wj) + β26ln(fi) + β27WAj,   (13) 

where α7 is the mean ratio, the β's are estimated, wj is averaged across five water samples taken 

between May 28 and June 11 in each site, and WAj is the weighted measure of wetland area 

described previously and that is included to account for the influence of wetlands on the delivery 

of metals.  We used spring measurements because fish signatures are most sensitive to metal 

uptake during larval development (88).
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