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Inventory of Supplemental Information 
 

1) Figure S1 – Expands upon Figure 6, indicating the percent variance explained of 
each task’s FC matrix by resting-state and multi-task FC matrices. This 
comparison is also performed for each task relative to each other. 

2) Supplemental Experimental Procedures 
3) Supplemental References 

 
 
 

 
Figure S1 – Amount of task-specific network architecture variance explained by the rest 
and multi-task network architectures, related to Figure 6. As before, we compared whole-
brain FC matrices using Pearson correlations, but we now square the resulting r-values to 
facilitate inferences regarding percent variance explained. Each task’s whole-brain FC matrix 
was compared to the resting-state FC and multi-task FC matrices (from Figures 3A & 4). A, 
Both resting-state and multi-task FC matrices explained a substantial amount of variance in the 
FC values across inter-regional connections (the ‘network architecture’) for each task on 
average, in both datasets. Error bars indicate inter-task standard deviations. B, Each task FC 
matrix’s correlation with the resting-state FC matrix for the 7-task dataset. These are likely the 
most accurate results given that the most data contributed to both task and rest FC matrices, 
and given that the resting-state FC matrix does not include potentially arbitrary similarities in FC 
across tasks (see text for details). Minimum r2=0.61, maximum r2=0.77. C, Each of the seven 
task FC matrices are compared to every other (first seven locations, in the order specified in 
Figure 1B), and to the rest FC matrix (the last location). 

 



 2 

 
SUPPLEMENTAL EXPERIMENTAL PROCEDURES 
 
Task FC estimation. For task data, we sought to suppress or remove influences of 
(across-trial mean) task-related activations on task-related changes in functional 
connectivity. Therefore, we ran a standard fMRI general linear model analysis, and 
calculated FC based on the residuals. Specifically, each region’s task time series was 
modeled using a standard general linear model with one regression coefficient per task. 
To improve removal of task-related activation variance, a custom hemodynamic 
response function was used for each subject, based on mean visual region activations 
to visual events and motor region activations to motor events, as done previously 
(Aguirre et al., 1998; Cole et al., 2013). For the 7-task dataset, a canonical 
hemodynamic response function was used, given the inability to estimate hemodynamic 
shape with a block design. A separate regressor was included for each major 7-task 
dataset condition (e.g., face stimuli vs. tool stimuli in the N-back task; 24 regressors 
total). The residuals from this regression model were used for FC estimation, restricted 
to time points corresponding to the current task (including a standard hemodynamic 
lag). Note that regressing out task events using general linear modeling primarily 
removes the across-trial signal means, retaining trial-to-trial and sub-trial fluctuations in 
time series such that these sources of variability likely contribute the most to task FC 
estimates (Rissman et al., 2004; Truccolo et al., 2002). Also note that the mean task-
related activation confound may have had only a minor effect on results, as removing 
the activation regression preprocessing step only reduced the 7-task multi-task FC 
matrix similarity to the resting-state FC matrix (Figure 4) from 0.90 to 0.86. 
 The residuals from the task activation (GLM) regression model were used for FC 
estimation, restricted to time points corresponding to the current task (including a 
standard hemodynamic lag). This step made our approach similar to generalized 
psycho-physiological interaction (McLaren et al., 2012), except that 1) the task timing 
regression was run prior to FC calculation rather than simultaneously, 2) an across-
condition ‘general’ regressor was not included (given our interest in intrinsic across-task 
FC), and 3) FC was measured as Pearson correlations (i.e., covariance normalized by 
both time series’ standard deviations) rather than regression beta coefficients (i.e., 
covariance normalized by the seed region’s variance). We did not use psycho-
physiological interaction because of our interest in FC that was consistent across tasks, 
which is removed in both the standard and generalized psycho-physiological interaction 
approaches (McLaren et al., 2012; O'reilly et al., 2012). 
 
Estimating percent of FC matrix modification. Each functional connection for each 
task was compared with that connection during rest (Figure 8A). We applied a Fisher’s 
z-transform to each functional connection and ran a two-tailed t-test (paired by subject), 
creating a whole-brain FC matrix of p-values for each task. We then corrected this 
matrix for multiple comparisons using false discovery rate (Genovese et al., 2002) 
before counting the number of surviving connections and dividing by the total number of 
connections to get a percentage. 
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The influence of the amount of data on individual task FC estimates. Unlike the 64-
task dataset, for which the intrinsic FC matrices accounted for less than half of the inter-
connection variance, in the 7-task dataset over two-thirds of the inter-connection 
variance was explained (Figure S1). We next assessed whether this was due to the 
higher amount of data contributing to FC estimates in the 7-task dataset. Consistent 
with this possibility, the average amount of variance explained by resting-state FC 
dropped substantially when the same amount of data per subject was used for the 7-
task dataset as the 64-task dataset: mean r2=0.49. When the same number of subjects 
(N=15) was also used this number dropped further: mean r2=0.19. This was much more 
similar to the 64-task dataset result (mean r2=0.38). These results suggest that the 7-
task dataset provides the most accurate estimate of the contribution of intrinsic FC to 
task FC, as that dataset includes the most data per brain state. We therefore focused 
primarily on the 7-task dataset for analyses involving individual-task FC estimates. 
 
Static community detection. We used the Louvain locally-greedy algorithm (Blondel et 
al., 2008; Jutla et al., 2011) for static community detection. We searched over two free 
parameters to find a community partition for the across-subject mean resting-state FC 
matrix (Figure 3A, right side). The first parameter was the density threshold, whereby 
weak connections (and all negative connections) were removed prior to running the 
community detection algorithm. The second parameter was the structural resolution 
parameter, which can be used to tune the number of communities identified in the FC 
matrix. The parameter search was conducted across combinations of these two 
parameters (density of 40% to 2% in increments of 2.5%, and resolution of 1 to 3 in 
increments of 0.2), with two criteria: 1) there should be a peak of partition similarity (z-
score of the Rand coefficient (Traud et al., 2011)) among adjacent locations in this two-
dimensional parameter space, and 2) there should be distinct communities 
corresponding to visual, auditory, default-mode, and motor/tactile systems (given 
decades of neuroscience research demonstrating their existence). A five-community 
partition had the highest nearest-neighbor similarity in parameter space, but this did not 
separate out the auditory system. The next-highest nearest-neighbor similarity peak 
(density = 9%, resolution = 1.7) was a ten-community partition with distinct communities 
corresponding to auditory, visual, default-mode, and motor/tactile systems. These 
parameters were applied to the multi-task average FC matrix, yielding a similar 
community partition. These partitions were then visualized using Connectome 
Workbench software (Van Essen et al., 2013) (Figure 3B). 
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