Supplementary Figures

Supplementary Figure 1: OYE structures used to define the search template.
10YA: OYE from Saccharomyces pastorianus¹; 1ICQ: 12-oxophytodienoate
reductase 1 from Solanum lycopersicum²; 3HGS: 12-oxophytodienoate reductase
3 from Solanum lycopersicum³; 1Z42 YqjM from Bacillus subtilis⁴; 2H90:
xenobiotic reductase A from Pseudomonas putida⁵; 3KRU: OYE from
Thermoanaerobacter pseudethanolicus E39⁶; 3HF3: OYE from Thermus
scotoductus SA-01⁷; 1H50: pentaerythritol tetranitrate reductase from
Enterobacter cloacae⁸; 2GQ9: SYE1 from Shewanella oneidensis MR-1⁹. Amino
acid residues are shown in grey, the flavin cofactors in yellow. The distances d₁d₄ are depicted as dashed magenta lines. The figure was prepared using the
program PyMOL (Schrodinger Inc.).

Supplementary Figure 2: Stereo representation of electron density maps of the bound ligands. *Fo-Fc* omit density (contoured at 3σ) of the complexes of *Ph*ENR with *p*-hydroxybenzaldehyde (**a**), 1,4-hydroquinone (**b**) and 2-cyclohexen-1-one (**c**). Amino acid residues are shown as purple lines, the flavin cofactors are shown in yellow. The bound ligands are shown as cyan sticks. The figure was prepared using the program PyMOL (Schrodinger Inc.).

Supplementary Figure 3: Stereo representation of electron density maps of the bound ligands. *Fo-Fc* omit density (contoured at 3σ) of the complexes of *Tt*ENR with *p*-hydroxybenzaldehyde (**a**), 1,4-hydroquinone (**b**) and 2-cyclohexen-1-one (**c**). Amino acid residues are shown as dark blue lines, the flavin cofactors are shown in yellow. The bound ligands are shown as cyan sticks. The figure was prepared using the program PyMOL (Schrodinger Inc.).

Supplementary Figure 4: Structures of OYEs in complex with *p*hydroxybenzaldehyde, close-up view of the ligand binding site. **10YB**: OYE from *Saccharomyces pastorianus*¹; **1Z42** YqjM from *Bacillus subtilis*⁴; **2GQ9**: SYE1 from *Shewanella oneidensis* MR-1⁹; **3ATZ**: OYE from *Trypanosoma cruzi*¹⁰; **3HGJ**: OYE from *Thermus scotoductus*⁷; **4JIP**: glycerol trinitrate reductase NerA from *Agrobacterium radiobacter*¹¹. Amino acid residues are shown in grey, the flavin cofactor in yellow and the bound ligand in magenta. Hydrogen bonds are depicted as green dashed lines. The figure was prepared using the program PyMOL (Schrodinger Inc.).

Supplementary Figure 5: Screenshot of the 2D/3D sketcher in Relibase+ with the definition of the search template. Since the sketcher does not show all defined 3D descriptors at once, the distance parameters (labeled d_1 - d_4) were overlaid with green lines.

Supplementary Figure 6: Substrates (and reaction products) used for the biochemical characterization and the biocatalytic transformations.

Supplementary Figure 7: Possible reaction pathways in the biocatalytic transformations. The reactive agent in the Weitz-Scheffer epoxidation is either the flavin-hydroperoxide intermediate or hydrogen peroxide produced by the oxidation of reduced FMN by molecular oxygen.

Supplementary Tables

	distances [Å]					
PDB-entry	$d_1^{\mathrm{a,e}}$	$d_{2^{\mathrm{b,e}}}$	$d_{3^{c}}$	$d_{4^{\mathrm{d}}}$		
10YA	7.6	4.7	6.1	6.6		
1ICQ	7.6	4.9	6.5	7.7		
3HGS	7.6	4.7	6.5	7.2		
1Z42	7.8	4.6	6.5	6.9		
2H90	7.9	4.7	6.7	7.0		
3KRU	7.7	4.8	6.4	6.6		
3HF3	7.6	4.7	6.4	6.9		
1H50	7.6	4.8	6.3	7.0		
2GQ9	7.6	4.8	6.4	6.9		

Supplementary Table 1: Distances between crucial active site residues in structures of Old Yellow Enzymes.

^apseudoatom center of His to FMN-N5

^bpseudoatom center of His to His-ND1 or Asn-

ND2

^cHis-ND1 or Asn-ND2 to FMN-N5

^dTyr-OH to FMN-N5

^epseudoatoms were placed at the geometric

centers of the imidazole rings

protein	PDB-entry	
FMN-binding protein from Pyrococcus horikoshii	2R6V	
putative styrene monooxygenase small component from Thermus thermophilus	1USC, 1USF	non-0
cholesterol oxidase from Brevibacterium sterolicum	210K	YE hits
oxidoreductase from Agrobacterium fabrum	3FBS	01
flavocytochrome C from Shewanella frigidimarina	1JRZ	_
OYE from Saccharomyces pastorianus	10YA *, 10YB, 10YC, 1K02	ת
OPR-1 from <i>Solanum</i> <i>lycopersicum</i> and from <i>Arabidopsis thaliana</i>	1ICQ *, 1ICP, 1ICS, 3HGR, 2Q3O, 2Q3R	its of kno
OPR-3 from <i>Solanum</i> <i>lycopersicum</i> and from <i>Arabidopsis thaliana</i>	3HGS *, 3HGO, 2Q3O	wn OYE s
YqjM from Bacillus subtilis	1Z42 *, 1Z41, 1Z44, 1Z48	truct
xenobiotic reductase A from Pseudomonas putida	2H90 *, 2H8Z, 2H8X	tures in gene
thermostable OYE from Thermoanaerobacter pseudethanolicus	3KRU *, 3KRZ	icluding s eration(*)
OYE from Thermus scotoductus	3HF3 *, 3HGJ	truc
pentaerythritol tetranitrate (PETN) reductase from <i>Enterobacter cloacae</i>	1H50 *, 1H51, 1H60, 1H61, 1H62, 1H63, 3F03, 2ABA, 1VYR, 1GVR, 1GVS, 1GVO, 1GVQ, 2ABB, 1VYP, 3KFT	tures used fc
SYE-1 from Shewanella oneidensis	2GQ9 *, 2GQ8, 2GQA	or temļ
N-ethylmaleimide reductase from Burkholderia pseudomallei	3GKA	olate

Supplementary Table 2: Result of the catalophore search.

	PhENR, 2-cyclo-	PhENR. pHB	<i>Ph</i> ENR, 1,4-	TtENR, 2-cyclo-	<i>Tt</i> ENR. <i>p</i> HB	<i>Tt</i> ENR, 1,4-
	hexen-1-one	,	hydro-quinone	hexen-1-one	, p2	hydro-quinone
Data collection						
Space group	<i>P</i> 6 ₁ 22	<i>P</i> 6 ₁ 22	<i>P</i> 6 ₁ 22	$P2_1$	$P2_{1}2_{1}2_{1}$	$P2_{1}2_{1}2_{1}$
Cell dimensions						
a, b, c (Å)	46.1, 46.1, 269.0	46.3, 46.3, 268.9	46.4, 46.4, 269.6	63.8, 73.8, 77.4	64.7, 74.9, 77.6	64.5, 74.6, 77.7
α, β, γ (°)	90, 90, 120	90, 90, 120	90, 90, 120	90, 90.1, 90	90, 90, 90	90, 90, 90
Possilution (Å)	45-1.75	20-2.10	40-1.68	30-1.65	38-1.70	50-2.15
Resolution (A)	(1.85-1.75)*	(2.20-2.10)*	(1.78-1.68)*	(1.75-1.65)*	$(1.80 - 1.70)^*$	(2.28-2.15)*
R _{meas}	0.058 (0.675)	0.060 (0.291)	0.068 (0.501)	0.060 (0.720)	0.082 (0.525)	0.105 (0.626)
I/σI	26.2 (3.5)	21.4 (4.3)	22.6 (3.7)	16.5 (2.3)	16.0 (3.3)	12.7 (3.4)
Completeness (%)	100 (100)	85.1 (90.0)	89.2 (91.6)	99.4 (97.0)	92.7 (96.0)	99.0 (96.8)
Redundancy	15.3 (10.8)	7.8 (3.8)	11.2 (9.5)	4.2 (3.8)	5.9 (6.2)	9.3 (8.3)
Definence						
Reinement	45 1 75	20.210	40.1.0	20.1.65	20 1 70	
Resolution (A)	45-1.75	20-2.10	40-1.08	30-1.05	38-1.70	50-2.15
No. reflections	18259 (2/11)	9300 (1218)	18582 (3000)	86300 (13487)	39042 (6287)	20947 (3245)
R _{work} / R _{free}	0.194 / 0.230	0.242 / 0.269	0.213 / 0.249	0.161 / 0.186	0.242 / 0.277	0.192 / 0.249
No. atoms	1.100	1400	1400	5000	250(2011
Protein	1476	1408	1488	5828	2786	2811
Ligand/cofactor	45	40	39	180	80	78
Water	62	18	93	620	173	111
<i>B</i> -factors (A ²)						
Protein	30.8	25.8	23.5	22.2	19.1	49.1
Ligand/cofactor	18.9	17.6	15.1	21.8	17.8	40.6
Water	38.5	30.7	34.4	32.7	20.4	50.3
R.m.s. deviations						
Bond lengths (Å)	0.008	0.012	0.012	0.006	0.015	0.010
Bond angles (°)	1.3	1.7	1.6	1.2	1.8	1.5
PDB-entry	3ZOG	3ZOC	3ZOD	3ZOH	3ZOE	3ZOF

Supplementary Table 3: Data collection and refinement statistics.

*Highest resolution shell is shown in parentheses.

	OPR1 ^{12,13}		OPR3 ^{12,13}		YqjM ¹³		OYE1 ¹⁴	
Substrate	с [%]	e.e. [%]	с [%]	e.e. [%]	с [%]	e.e. [%]	с [%]	e.e. [%]
	95-98	51-91 (R)	95-98	33-99 (R)	86-96	37-99 (R)	88-99	39-98 (R)
Ja 3a	96	47 (<i>R</i>)	70	19 (<i>S</i>)	78	10 (<i>R</i>)	-	-
сно 4а	15-99	>95 (S)	90-95	>95 (S)	57-70	>95 (S)	49-98	15 (S) – 77 (R)
	99	96-99 (R)	99	92-99 (R)	98-99	92-99 (R)	>99	72-75 (R)

Supplementary Table 4: Biocatalytic transformations of typical Old-Yellow-Enzymes.

c: conversion, e.e.: enantiomeric excess,

OPR1: 12-oxophytodienoate reductase isoform 1 from Lycopersicon esculentum (tomato), OPR3: 12-oxophytodienoate reductase isoform 3 from Lycopersicon esculentum (tomato),

YqjM: Old-Yellow-Enzyme homolog from *Bacillus subtilis*, OYE1: Old-Yellow-Enzyme from *Saccharomyces cerevisiae*

				<i>Tt</i> ENR		<i>Ph</i> ENR	
	conditions ^a	<i>T</i> [°C]	рН	NADH	NADPH	NADH	NADPH
				c [%]	c [%]	c [%]	c [%]
1	huffor A		7	19	20	20	>99
2	bullel A,	30	8	9	15	15	67
3	aerobic		9	4	8	8	<1
4	buffer A,		7		19		>99
5	anaerobic		8		7		80
6		30	6.2		17		98
7	buffer B,		7		27		80
8	anaerobic		7.5		21		
9			8		12		
10 ^b	buffer B, anaerobic	30			15		
11 ^b		40	7		14		
12 ^b		50			12		
13 ^b	buffer A,	30					40
14 ^b		40	7				37
15 ^b	anaerobic	50					36

Supplementary Table 5: Optimization of reaction conditions.

^abuffer A: 50 mM Tris/HCl buffer; buffer B: 50 mM phosphate buffer; ^bin an Eppendorf thermomixer at 300 rpm;

Supplementary Methods

GC- and HPLC-analytics

GC–FID analyses were carried out with a Varian 3800 GC-FID chromatograph (Palo Alto, CA, USA) using a J&W HP-5 5% phenylmethylpolysiloxane capillary column (30 m x 0.32 mm, 0.25 Im film, Agilent, St. Clara, CA, USA) using H₂ as a carrier gas (14.5 psi). HPLC analyses were performed using a Shimadzu LC-20AD system (Kyoto, Japan) equipped with a with a SPD-M20A diode array detector.

For achiral GC, the injector and detector temperatures were set to 300 °C, the split ratio was 20:1. Temperature program for **1-4** and **6-9** was: 40 °C hold 2 min, 20 °C min⁻¹ to 180 °C, hold 8 min. Retention times were as follows: **1a**: 5.9 min, **1b**: 5.5 min, **1c**: 7.0 min, **2a**: 8.1 min, **2b**: 8.3 min, **2c**: 7.9 min, **3a**: 4.7 min, **3b**: 3.9 min, (*Z*)-**4a**: 9.0 min, (*E*)-**4a**: 9.3 min, **4b**: 8.2 min, **6a**: 6.1 min, **6b**: 5.1 min, **7a**: 7.3 min, **7b**: 6.2 min, **8a**: 5.6 min, **8b**: 4.8 min, **9a**: 6.3 min, **9b**: 4.9 min. Temperature program for **5**: 100 °C hold 0.5 min, 10 °C min⁻¹ to 280 °C, hold 2 min. Retention times were as follows: **5a**: 10.3 min, **5b**: 11.1 min.

The enantioselectivity for **2b**, **3b**, **4b** and **12b** was determined by chiral GC-FID. For **2b** and **3b** a Varian Chirasil-Dex CB capillary column (25 m x 0.32 mm, 0.25 µm film, Palo Alto, CA, USA), injector and detector temperatures of 200 °C and a 20:1 split ratio were used. The temperature program for **2b** was: 90 °C hold 2 min, 4 °C min⁻¹ to 115 °C, 20 °C min⁻¹ to 180 °C hold 2 min. Retention times were: (*R*)-2b: 10.99 min, (*S*)-2b: 11.05 min. 3b was analyzed as the corresponding alcohol (2-methylpentanol). For the reduction of **3b** CeCl₃ (37 µL, 10 % CeCl₃ x 7 H₂O in water) was added. After mixing and addition of NaBH₄ (37 μ l, 1% NaBH₄ in H₂O) the vial was shaken for 1 h at 40 °C and the workup was continued as described above. The temperature program was: 40 °C hold 0 min, 10 °C min⁻¹ to 60 °C hold 6 min, 10 °C min⁻¹ to 180 °C. Retention times were 11.9 min (*R*) and 12.0 min (*S*). For **4b** a Hydrodex- β -TBDAc capillary column, 25 m x 0.25 mm, injector and detector temperatures of 250 °C and a 20:1 split ratio were used. The temperature program for **4b** was 80 °C hold 2 min, 1 °C min⁻¹ to 95 °C, 0.5 °C min⁻¹ to 100 °C hold 5 min, 10 °C min⁻¹ to 180 °C. Retention times were: (*S*)-4b: 29.5 min, (*R*)-4b: 30.1 min. For 8b a Supelco Chiraldex B-TA capillary column (40 m x 0.32 mm x 0.12 μm film, Sigma Aldrich, St. Louis, MO,

USA), injector and detector temperatures of 200 °C and a 20:1 split ratio were used. The temperature program for **8b** was 70 °C hold 8 min, 10 °C min⁻¹ to 80 °C hold 2 min, 30 °C min⁻¹ to 180 °C. Retention times were: (*R*)-**8b**: 11.54 min, (*S*)-**8b**: 11.68 min. The enantioselectivity for **5b** was determined by HPLC using a Chiralcel OD-H column (25 cm x 0.46 cm, Chiral Technologies, Illkirch, France) and *n*-heptane/EtOH, 95:5 (isocratic) at 18 °C. Retention times were: (*R*)-**5b**: 33.9 min, (*S*)-**5b**: 38.4 min.

The absolute configurations of **2b**, **3b**, **5b** and **8b** were determined by coinjection with reference materials of known absolute configuration¹³ as follows: **2b**: bioreduction with bakers yeast produced (*R*)-**2b** with 62% e.e.; **3b**: bioreduction with OPR1 produced (*R*)-**3b** with 47% e.e.; **5b**: bioreduction with OYE1 produced (*R*)-**5b** with 99% e.e.; **8b**: bioreduction with OPR1 produced (*S*)-**8b** with 61% e.e. The absolute configuration of **4b** was determined by coinjection with commercially available (*S*)-citronellal (*S*)-**4b** (Sigma Aldrich, St. Louis, MO, USA).

Supplementary References

- 1 Fox, K. M. & Karplus, P. A. Old yellow enzyme at 2 Å resolution: Overall structure, ligand binding, and comparison with related flavoproteins. *Structure* **2**, 1089-1105 (1994).
- 2 Breithaupt, C. *et al.* X-ray structure of 12-oxophytodienoate reductase 1 provides structural insight into substrate binding and specificity within the family of OYE. *Structure* **9**, 419-429 (2001).
- 3 Breithaupt, C. *et al.* Structural basis of substrate specificity of plant 12oxophytodienoate reductases. *J. Mol. Biol.* **392**, 1266-1277 (2009).
- Kitzing, K. *et al.* The 1.3 Å crystal structure of the flavoprotein YqjM reveals a novel class of Old Yellow Enzymes. *J. Biol. Chem.* 280, 27904-27913 (2005).
- Griese, J. J., P. Jakob, R., Schwarzinger, S. & Dobbek, H. Xenobiotic reductase A in the degradation of quinoline by *Pseudomonas putida* 86: Physiological function, structure and mechanism of 8-hydroxycoumarin reduction. *J. Mol. Biol.* 361, 140-152 (2006).
- 6 Adalbjörnsson, B. V. *et al.* Biocatalysis with thermostable enzymes: Structure and properties of a thermophilic 'ene'-reductase related to old yellow enzyme. *ChemBioChem* **11**, 197-207 (2010).
- Opperman, D. J. *et al.* Crystal structure of a thermostable old yellow
 enzyme from *Thermus scotoductus* SA-01. *Biochem. Biophys. Res. Co.* 393, 426-431 (2010).
- Barna, T. M. *et al.* Crystal structure of pentaerythritol tetranitrate
 reductase: "Flipped" binding geometries for steroid substrates in
 different redox states of the enzyme. *J. Mol. Biol.* **310**, 433-447 (2001).
- 9 van den Hemel, D., Brige, A., Savvides, S. N. & Van Beeumen, J. Ligandinduced conformational changes in the capping subdomain of a bacterial Old Yellow Enzyme homologue and conserved sequence fingerprints provide new insights into substrate binding. *J. Biol. Chem.* 281, 28152-28161 (2006).
- Okamoto, N. *et al.* Structural insight into the stereoselective production of
 PGF2α by Old Yellow Enzyme from *Trypanosoma cruzi*. *J. Biochem.* 150,
 563-568 (2011).

- 11 Oberdorfer, G. *et al.* The structure of glycerol trinitrate reductase NerA from *Agrobacterium radiobacter* reveals the molecular reason for nitroand ene-reductase activity in OYE homologues. *ChemBioChem* **14**, 836-845 (2013).
- Hall, M., Stueckler, C., Kroutil, W., Macheroux, P. & Faber, K. Asymmetric bioreduction of activated alkenes using cloned 12-oxophytodienoate reductase isoenzymes OPR-1 and OPR-3 from *Lycopersicon esculentum* (tomato): A striking change of stereoselectivity. *Angew. Chem. Int. Ed.* 46, 3934-3937 (2007).
- Hall, M. *et al.* Asymmetric bioreduction of C=C bonds using enoate reductases OPR1, OPR3 and YqjM: Enzyme-based stereocontrol. *Adv. Synth. Catal.* **350**, 411-418 (2008).
- Hall, M. *et al.* Asymmetric bioreduction of activated C=C bonds using *Zymomonas mobilis* NCR enoate reductase and old yellow enzymes OYE 13 from yeasts. *Eur. J. Org. Chem.*, 1511-1516 (2008).