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I. GIANT RABI OSCILLATIONS BETWEEN
ARBITRARILY DISTANT MANIFOLDS.

Without dissipation, the coherent driving at low in-
tensity of the detuned cQED system probes the Jaynes–
Cummings resonances. This leads to giant Rabi os-
cillations between the vacuum state |0g〉 on the one
hand and the quantum emitter (QE)’s excited state
with N photons in the cavity |Ne〉, on the other hand.
Since N can be any integer, depending on which res-
onance is driven, the superposition is between states
that differ arbitrarily in energy:

|ψN 〉 =
1√
2

(|0g〉+ |Ne〉) . (1)

Such a superposition has been hypothetically referred
to describe “spooky” features of quantum mechanics,
like non-conservation of energy (the collapse of such a
wavefunction suddenly realizes a state that has either
no energy or the huge amount h̄ωσ +Nh̄ωa) [1, 2]. We
provide here a mechanism to actually realize it.

The ease in setting up the state Eq. (1), that would
require extremely difficult operations with little chances
of success with a direct engineering [3], is to be atoned
by the timescales involved. The Rabi oscillations be-
come vanishingly slow for increasing differences of en-
ergy. In what follows, we derive analytical expressions
for their frequencies.

In the rotating frame of the laser, the Hamiltonian
becomes H = δaa

†a + δσσ
†σ + g(a†σ + σ†a) + Ω(σ† +

σ) and we are left with solving Schrödinger equation

|ψ̇〉 = −iH|ψ〉, whose formal solution in the basis of
the eigenstates |φi〉 of H reads:

|ψ(t)〉 = c1|φ1〉e−iE1t + c2|φ2〉e−iE2t + · · · (2)

with the coefficients ci = 〈φi|ψ0〉 to be determined
by the initial state |ψ0〉. Using the basis of bare
states, {|0〉, |1〉, |2〉, |3〉, . . .} ≡ {|0g〉, |0e〉, |1g〉, |1e〉, . . .},
one can represent the wavefunction through the prob-
abilities pi for the system to be in the state |i〉:

pi(t) = |〈i|ψ(t)〉|2 =
∑
j,k

cjc
∗
k〈i|φj〉〈φk|i〉ei(Ek−Ej)t .

(3)
While in general, to first approximation, the system re-
mains trivially in the ground state, one finds that for

FIG. S1: a, Probability of occupation of the states
{|0g〉, |0e〉, |1g〉, . . . } as a function of the excitation fre-
quency. This shows how the laser can “strike” quantum res-
onances to trigger full-amplitude Rabi oscillations between
the vacuum |0g〉, in red, and any of the excited states |Ne〉.
The multi-photon resonances of states with N photons in
the cavity have a width of the order of 10−3N . They thus
appear as straight vertical lines on the scale of panel a. A
magnification of a generic resonance is shown in b.

certain frequencies of excitation, ωN , there is a strik-
ing change to full-magnitude Rabi oscillations, with
p0g = pNe = 1/2 and all other pk = 0. This is the
case whenever the laser hits a (N + 1)-photon reso-
nance of the Jaynes–Cummings ladder, as explained
in the main text. In the purely Hamiltonian picture,
such resonances can be revealed by plotting the ampli-
tude of the Rabi oscillations, that is, their time average
which is given by the sum of the non-oscillating terms
in Eq. (3), i.e., 〈pi〉 =

∑
j |cj |2|〈i|φj〉|2. These are dis-

played in Fig. S1 and are in direct correspondence with
the resonances in g(n) shown in Fig. 3c of the text. This
implies that this giant Rabi dynamics of distant mani-
folds is responsible for the strong N -photon correlations
in the detected field when opening the dissipative chan-
nel. One can see neatly how the laser “strikes different
quantum chords” and brings in resonance the vacuum
(upper red curve) with each one of the manifolds in
succession, climbing the Jaynes–Cumming ladder in the
process. There is a neat transition from the quantized
nature of the cavity QED system on the QE side, on
the right of the Fig. S1a, towards a continuum as it
bridges to the classical field of the cavity, on the left.
Note that the resonances widths decay exponentially
with the number of photons in the superposition and
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are thus extremely sharp, appearing like δ functions
in the plot. A magnification of a generic resonance is
provided in Fig. S1b.

Such strong resonances suggest a change in the struc-
ture of the energy levels induced by the laser, which
result, at certain frequencies, in the isolation of the
two states involved in the N -polariton state (1). A
convenient way to study analytically such an emerging
manifold structure is to resort to the Hamiltonian H
in the rotating frame of the laser in the limit Ω → 0.
The information of how the states are coupled when
the laser is switched on is encoded in the eigenener-
gies En± − nωL now explicitely dependent on the laser
frequency. All the resonances occur when two eigenen-
ergies cross, yielding the resonant frequencies:

ωn,ξn′,ξ′ = ωa +
ξ
√
ng2 + ∆2/4− ξ′

√
n′g2 + ∆2/4

n− n′
, (4)

with n, n′ ∈ N (and n 6= n′) and ξ, ξ′ ∈ {−1, 1} cor-
responding to lower and upper polaritons, respectively.
The ground state is given by ξ = −1, n = 0. This
predicts more resonances than those plotted in Fig. S1,
that appear as satellite peaks to the main resonances

which are ωN = ωN+1,1
0,−1 . The additional resonances

are indeed observed when zooming in on the appro-
priate range. They are small as they do not realize
full-amplitude Rabi oscillations, and correspond to n-
photon transitions between two manifolds not involving
the ground state. These peaks would yield full Rabi os-
cillations if the initial state would be chosen adequately.

Since an isolated manifold emerges at each resonance,
whose dynamics can be well separated from the rest of
the states, we can perform an adiabatic elimination to
retain only the coupling between the relevant states and
derive an effective Hamiltonian that provides the Rabi
frequencies. We will treat the case of |ψ2〉 explicitly. In
that situation, it is enough to restrict ourselves up to
the second manifold, and use for the solution the ansatz
|ψ(t)〉 =

∑4
i=0 ci(t)|i〉. The Schrödinger equation for

the coefficients reads:

i


ċ1
ċ2
ċ3
ċ4
ċ5

 =


0 Ω 0 0 0
Ω δσ g 0 0
0 g δa Ω 0

0 0 Ω δσ + δa
√

2g

0 0 0
√

2g 2δa



c1
c2
c3
c4
c5

 .

Setting ċ1 = ċ2 = ċ4 = 0, one can eliminate c1, c2 and c4 from the system of differential equations, and get the
corresponding effective Hamiltonian:

Heff =

 Ω2

δσ(1−g2/(δaδσ))
gΩ2

δaδσ

(
1

1−g2/(δaδσ))

)
gΩ2

δaδσ

(
1

1−g2/(δaδσ))

)
δa + δσ − g2

δa
+
(

1
1−g2/(δaδσ))

)
Ω2

δa

 . (5)

The Rabi frequency for the two photon resonance is
thus obtained as:

Ω
(2)
eff =

gΩ2

δaδσ − g2
. (6)

If δa, δσ � g,Ω, the Rabi frequency takes the form
(
√
gΩ)2/(δaδσ) of a generalized Lamb shift for the

Jaynes–Cummings model, that is, it shows the energy
shift of the coupled light-matter system by the driving
laser as opposed to the conventional scenario where the
light mode shifts the QE alone.

Following the same procedure for the next manifolds
of excitation, the Rabi frequency up to any order can
be obtained analytically as:

Ω
(n)
eff =

gn−1Ωn
√

(n− 1)!

D2(n−1)
, (7)

where Dn is defined through the recurrence relation
Dn = anDn−1 − b2nDn−2 with D0 = 1, D1 = a1 with:

an =

{
δσ + n−1

2 δa ,
n
2 δa ,

bn =

{
−Ω , n odd√

n
2 g , n even

resulting in exact expressions easily obtained but too
heavy to write here. Approximated versions in the limit
of large detunings are much simpler, such as the Rabi
frequency for |ψ3〉:

Ω
(3)
eff ≈

g2Ω3

√
2(δ3

aδσ + δ2
aδ

2
σ)
. (8)

This completes the characterization of the remark-
able states of Eq. (1). The quantum superposition be-
tween the vacuum and a highly excited state is pos-
sible, although it involves very sharp resonances with
slow Rabi oscillations. We proceed to the case where
such resonances can be brought to immediate use for
actual devices, thanks to dissipation.

II. TRANSITION FROM THE
JAYNES–CUMMINGS DYNAMICS TO THE

MOLLOW DYNAMICS.

The Hamiltonian used in this work covers fully and
bridges between two pillars of quantum nonlinear op-
tics, namely, the Jaynes–Cummings model on the one
hand and the Mollow physics of the dressed atom on
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FIG. S2: (Colour online) Quantum trajectory showing the different timescales involved in the mechanism of two-photon
emission. The colour code and notations are the same as Fig. 4a–c of the text. Top: long time-range dynamics. Two-photon
events are identified as blue triangles while the underlying single-photons are identified as red triangles. Emission from the
QE is shown as a black triangle. Statistics of these events are given by the two-photon second order correlation function

g
(2)
2 (τ). Medium: White stripes are due to the absence of Rabi flopping of the QE after the second cavity emission, and its

length is given by the QE lifetime. After a subsequent QE emission, the Rabi flopping is restored and the construction of a
new two-photon state in the cavity is resumed. This manifests as a dependence of the statistics of the two-photon bundles
on the QE lifetime (Fig. S6a). Bottom: The shortest timescale on the dynamics is given by the Mollow frequency, that
precedes the sequence of rapid two photons emission.

the other hand. The transition is rich and compli-
cated and this work certainly does not exaust it. It
is maybe better comprehended by following the reso-
nances themselves, as the laser intensity is tuned up.
This is shown in Fig. 3a of the text for three pumping
values and is provided for all pumpings in the movie
JCMollowTransition.mp4. The system starts at low
pumping intensity with resonances at ωN [cf. Eq. (1)
from the text]. Each resonance corresponds to a giant
Rabi oscillations described by Eq. (1). In this regime,
the resonances in g(n) at various ωL (shown in the
animation for n = 2) change magnitude relatively to
each other with increasing pumping but stay pinned to
the Jaynes–Cumming ladder. At some point, the laser
takes over the cavity, resulting in a blueshift of the res-
onances due to state dressing. This is the transition to
the Mollow regime. At large pumping, the cavity that
was previously constituting half of the system along
with the QE, becomes a mere Purcell enhancer of the
dynamics, now dominated by the laser that is driving
the QE. Note that the QE always remains the central
actor: the quantum character of the emission comes
from the QE, while the cavity, or the laser, are classical

probes or catalysts, that trigger, store and convey the
engineered emission from the active material [4].

The transition is also pictured from an alternative
point of view in Fig. 4a–c, through the probabilities
derived from the wavefunction. The Jaynes–Cummings
limit, Fig. 4a, is simply the superposition of two states.
The Mollow limit, Fig. 4b, exhibits a more complicated
dynamics that involves a fast Rabi flopping of the dot
and starts to mix more states from various manifolds,
but still keeping the feature of involving only a few
of them. The same limit with dissipation, Fig. 4c, is
the case that realizes N -photon emission. The excita-
tion of the multi-photon resonances in this case brings
in succession various regimes that evolve with different
timescales, and between which the system transits by
collapse of the wavefunction. This is shown in Fig. S2,
that displays a long portion of one quantum trajectory
(top) that is expanded successively for regions of in-
terest (from top to bottom). The top panel depicts
the bundle emission, indicated by blue triangles, at the
timescale of detection. This appears as white stripes
in an otherwise fast oscillating dynamics. Zooming in
on such a stripe, second row, one see that the bundle
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FIG. S3: a, Dynamics of the strongly-driven and largely detuned system within the RWA (panel b of Fig. 4 in the main
text). b, The corresponding dynamics without the RWA in the USC regime for ωa/g = 100. While the counter-rotating
terms have an observable difference (starting with ratio ωa/g <∼ 2000), the phenomenology remains essentially the same. c,
Shift δL of the laser frequency ωL to trigger the two-photon resonance, caused by the counter-rotating terms in the Mollow
regime of strong driving. At about ωa/g ≈ 20, the mechanism breaks down and fails to produce a two-photon resonance
with large amplitude Rabi oscillations. This is the regime where the RWA fails completely.

is composed of two single-photons, depicted as red tri-
angles. This window contains the two-photon emission
iself, on a short timescale, followed by the reloading
time, ruled by the QE. This determines the statistics
of bundle emission. Finally, zooming in on the two-
photon emission itself, last row, one can resolve the
characteristic time of the two-photon emission process,
given by the cavity lifetime. The shortest timescale
is that of the Mollow Rabi floping, which governs the
dynamics most of the time, and whose jolting by the
quantum collapse provokes an avalanche of two-photon
emission.

III. VALIDITY OF THE ROTATING WAVE
APPROXIMATION.

The Jaynes–Cummings description is a simplified
model which, despite its various approximations, has
proved extremely successful in describing a large body
of experiments which belong to the paradigm of a two-
level system interacting with an harmonic mode [5].
The model can be subsequently extended and upgraded
with features to account for more realistic situations,
such as multiple-modes or many-body correlations [6–
8] (see also Section VI that includes in this way effects
of noise and decoherence), but the core of our effect
can be tracked down to the Jaynes–Cummings physics
itself.

One of the fundamental approximations that is per-
formed at a very early stage of the model is the so-called
Rotating Wave Approximation (RWA) [9], that neglects
the counter-rotating terms of the light-matter interac-
tion of the type aσ and a†σ†, rapidly oscillating, as
compared to the terms aσ† and a†σ, which balance the
frequencies of the modes at resonance. The approxima-
tion can lead to deviation from the actual result when

the system is extremely far from resonance and/or when
the frequency of the free oscillators is comparable to
the exchange rate of excitation (coupling strength), in
which case the system enters the regime of Ultra Strong
Coupling (USC) [10, 11]. The RWA may also be an
issue in the dynamics of the strongly driven two-level
system alone, where deviations from the approximation
manifest as the Bloch-Siegert shift [12]. Since our sys-
tem invokes both strong driving of the QE on the one
hand and detuning on the other hand, we must consider
the validity and effect of the RWA.

The validity of the RWA for the strongly driven
Jaynes–Cummings model has been studied in the liter-
ature [13, 14]. The counter-rotating terms were found
to be important in the USC regime, for ratios of ωa/g
of order at least 10. For the three platforms of choice
that we consider for our effect, one deals with ratios of
typically several hundreds for superconducting qubits
in a microwave resonator [15, 16], tens of thousands
and above for quantum dots in microcavities [17] and
millions and above for atoms [18]. For quantum dots
and atoms, we are extremely far from the USC and
the counter-rotating terms can be safely ignored. Su-
perconducting qubits are closer to the regime where
these term could matter, being indeed systems of choice
to approach the USC regime with the possibility to
get to the regime where the RWA breaks down com-
pletely [10]. To investigate the relevance of our sys-
tem also for these systems sensitive to the RWA, we
have performed numerical calculations that simulta-
neously take into account the counter-rotating terms
for both the detuned QE-cavity coupling on the one
hand and the driven QE on the other hand. We show
in Fig. S3 the regime where the approximation is the
less accurate, that is, at high driving intensity for a
superconducting qubit situation where ωg/g = 100
(the deviation starts to be unnoticeable for values of
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ωa/g >∼ 2000). The dynamics with RWA, which is the
case of the text, is compared to that without the ap-
proximation. While the counter-rotating terms do af-
fect the result, the effect is surprisingly resilient and
retains its qualitative features. Indeed, the non-RWA
dynamics mainly consists in a superimposition of very
fast oscillations on top of the RWA dynamics, leading
to a mere broadening of the oscillations. There is also a
small renormalization of the frequencies, that is due to
the shift of the resonance itself, shown in Fig. S3c. It
takes counter-rotating terms of the order of a fraction
of the detuning itself to completely spoil the effect and
reach a dynamics that differs in essential terms from
that of the RWA. This suggests that our scheme could
be usefully transported till far into the USC regime
where it could set the arena for interesting physics.
Note that the problem of a proper theoretical model to
describe the dissipative regime of an USC cavity QED
setup is still open to debate [11, 19, 20] and the theoret-
ical analysis of the output of such a device is thus way
beyond the scope of this Supplementary Information.

IV. THE RELATION OF THE “BUNDLE” TO
A FOCK STATE.

There are differences between the concept of a N -
photon Fock state |N〉 and a bundle, as discussed in
the main text. A Fock state |N〉 is a well defined ob-
ject that does not account for any internal degree of
freedom, while the bundle is the result of a dynami-
cal process and henceforth it has an intrinsic tempo-
ral structure. This stems from the radiative cascade
that gives rise to the emission of a bundle, which is
clearly manifested as blocks emerging in the diagonal
of the density matrix (see Fig. 5b). When the intracav-
ity dynamics is dominated by this cascade events (as
is the case in the regime of pure N -photon emission),
the steady state probability of finding n photons inside
the cavity is given by p(n) = na/(Nn), cf. Eq. (5) in

the text. In good approximation, p(0) = 1−
∑N
i=1 p(n)

since probabilities for higher n are much smaller than
those of the vacuum and the cascade of the bundle emis-
sion. Note that na/N is the bundle population. This
probability is the result of a time-averaging over all cy-
cles of the dynamics and is thus the one encoded in the
diagonal element of the cavity density matrix, which is
easily obtained from the master equation. The equa-
tion predicts a line in the graph of p(n) when plotted
as a function of 1/n, as shown in Fig. S4a, rather than
the peaked Kronecker distribution for a Fock state. The
slope of the line corresponds to the bundle population
na/N and its length to the number of photons in the
bundle. Deviations from a straight line indicate a pu-
rity lower than 100%.

As mentioned in the main text, these internal cor-
relations have a signature in the different time inter-
vals that separate the photons if they are individually
detected. The time separation between the photons
composing a bundle is sketched in Fig. 5c in the main

FIG. S4: (Colour online) Signatures of the internal struc-
ture of the N -photon bundles a, Diagonal elements of the
cavity density matrix p(n) = 〈n|ρ|n〉 in the regimes from
two to four-photon emission. Plotted as function of 1/n,
and according to Eq. (5) of the text, this yields a line in
the regime of 100% purity with a slope equal to the bun-
dle population na/N and extent equal to the number N of
photons per bundle. b, Distribution of time intervals τ be-
tween successive photons of a bundler, in the regimes of two
(blue), three (red) and four (green) photon emission. The
distributions are (N−1)-exponential forN -photon emission,
i.e., exponential for N = 2, bi-exponential for N = 3, etc.
This confirms the time-distribution of the photons within
the bundles as sketched in Fig. 5c in the main text. Thin
lines show the exp(−(N − 1)τ) decay, to which the dis-
tributions get parallel to. The distribution of four-photon
emission (green), for instance, gets parallel to all three lines
in successive intervals.

text. This structure can be seen from the collected
Monte-Carlo events by plotting the probability distri-
bution of the detection of two successive photons with a
given time difference, as is done in Fig. S4b, that shows
a N -exponential decay for the cases of 2 ≤ N ≤ 4-
photon emission. One observes that the jitter imposes
its largest toll for the case N = 2, since a bundler of N -
photon is wrapped up in a time window of HN/γa only
(HN is the Nth harmonic number, e.g., the overall life-
time is ≈ 2.28/γa for a bundle of five photons and is
still smaller than 3/γa for a fat bundle of ten photons).

One can characterize alternatively the quantum state
of the cavity field alone by turning to the Wigner distri-
bution, which provides a self-contained and insightful
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FIG. S5: (Colour online) Quantum state of the N–photon emitter. a–c, Wigner representation of the cavity field, comparing
the Wigner distribution of the Fock states |1〉 (a) and |2〉 (b) with that of the cavity field in the regime of two-photon emission,
to which we removed the predominant Wigner function of the vacuum. As also seen in the cut along a radius in d, the
Wigner function of the two-photon emitter (solid black) is qualitatively similar to the Fock state |1〉 (dashed red) but with
some attributes of Fock state |2〉 (dotted blue).

phase-space representation in the complex plane α =
(X + iP )/2 with X and P the quadratures [21]. The
Wigner representation for the Fock projector |m〉〈n| is:

Wmn(r, φ) =
(−1)n

π

√
n!

m!
eiφ(m−n)rm−nLm−nn r2e−

r2

2 ,

(9)
with m ≥ n (Wnm = W ∗mn) and Lm−nn (r2) La-
guerre polynomials. The Wigner function for the re-
duced density matrix ρ =

∑
mn ρmn|m〉〈n| is then

W =
∑
mn ρmnWmn. From this expression, one

sees that the Wigner function of the Fock state |N〉
is described essentially by the Laguerre polynomials
(−1)n

π L0
n(r2)e−r

2/2. Since L0
n(r2) has 2n roots, the

largest one of which being ∝
√
n, the associated Wigner

function features 2n-nodes contained in an annulus of
mean radius

√
n, cf. Fig. S5a–b. The Wigner repre-

sentation of the cavity field in our case features again
predominantly the vacuum, given the underlying mech-
anism. By removing this vacuum so as to magnify
the small structure due to the N -photon emission, one
sees that the result resembles a Fock state |1〉, with
the same number of nodes as its Wigner function, but
with a size comparable to that of the Fock state |2〉, as
shown in Fig. S5(a–c). We have checked that the same
pattern holds for higher regimes of N -photon emis-
sion, namely, one-node circularly symmetric Wigner
function with a radius that grows like the square root
of N . This indicates the peculiar character of the state
that gives rise to the bundle emission, mixing both
attributes of, and departure from, the Fock state it-
self. The symmetric Wigner distribution is achieved in
the regime of N -photon emission, with features mainly
given by the diagonal elements of the cavity density
matrix, Eq. (5) in the main text. It is surrounded
by states with an intricate structure when not in the
regime of 100% purity, as seen in the supplementary
video BundleQuantumState.mp4.

Now that we have shown that our emitter produces

states which are not strictly Fock states, we must bal-
ance the discussion by showing that there remains a
deep connection with this concept. It is maybe best
illustrated with the form of the generalized correlation

function g
(n)
N , Eq. (6) of the text. While the term aN

appears nowhere explicitly in the Hamiltonian or any
other part of the dynamics, it enters the correlation
function that describes the statistics of emission and a
in isolation plays no role by itself. Now, (aN )† is pre-
cisely the operator that creates a Fock state from the
vacuum:

|N〉 =
(aN )†√
N !
|0〉 . (10)

The statistics of the bundles is therefore described by a
quantity where the photon operator itself does not en-
ter but needs to be upgraded to a Fock state creation
operator. This demonstrates that there is a strong con-
nection between a bundle and a Fock state of N pho-
tons. Surprisingly, while we could expect that a corre-
lation function built on aN operators would break for
correlation times smaller than the coherence time of the
bundle, that is, for τ � 1/γa, the agreement remains
perfect down to τ = 0 coincidences. This suggests that
regardless of the internal structure of the bundle, it is
perceived as a Fock state in a measurement integrated
over a small time window, or simply because of the
time uncertainty in the detection. This is in agreement
with the production of Fock states from mechanisms
such as the joint emission of N atoms from an excited
state [22]. One could establish this fact on firmer the-
oretical grounds by studying the indistinguishability of
two bundles emitted by the system or of a bundle with
an exact Fock state, by computing HOM interferences
between the two arms of a beam-splitter. Such analy-
ses have been conducted only recently in a dynamical
setting [23] and their extension to characterize the out-
put of an emitter, such as our N–photon source, will
be presented in a future publication.
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FIG. S6: a, Second order bundle correlation function g
(2)
2 (τ) as a function of the QE decay rate γσ, showing how the

emitter covers various regimes from antibunching of two-photon emission for lower γσ to bunching of two-photon emission

for larger γσ, passing by coherent emission, g
(2)
2 (τ) = 1 at intermediate γσ ≈ 0.2g. Figures 3(h–i) in the text correspond

to two vertical cuts at γσ/g = 0.01 and γσ/g = 0.2 of this figure. b, Third order bundle correlation function g
(3)
2 (τ1, τ2) at

γσ/g = 0.2. The correlation is unity except in a small window at small τ ’s due to the cavity jiter, supporting that the bundle
emission is coherent to all orders. c, Bundle emission is coherent only when hitting the resonance, at ωL ≈ ωa + 34.6g, and
displays a given, but no particular in any sense, dynamics out of resonance.

Finally, we have addressed before the question of the
quantum state of one bundle. One could also pose the
problem of the quantum state of the stream of the emis-
sion, which is however even more involved as it requires
to describe the quantum state of the output field itself
and therefore a non-trivial extension of the model. One
can think, for instance, to study the quantum state of a
quantum oscillator initially at rest, after its excitation
for a given time by the emitter in the regime of N -
photon emission. It is expected to produce a coherent
superposition of multiples ofN photons, that is to say, a
brand of squeezing. All these questions are relevant for
quantum applications and remain to be fully explored.

V. HIGHER ORDER N-PHOTON
CORRELATIONS.

In the main text, we have established that the pro-
posed emitter substitutes the basic unit of excitation of
the light field—the photon—by the bundle (a packet of
N photons), and that the conventional tools of quan-
tum optics have to be upgraded consequently. Namely,
the standard photon statistics when the system is in
a regime of N -photon emission provides no particular
result, while the bundle-statistics behaves in a mean-
ingful way. We have stated that the bundle statistics
can be tuned with the QE lifetime 1/γσ. This is sub-

stantiated with Fig. S6a, that shows how g
(2)
2 (τ) evolves

from antibunched when γσ is small to bunched when it
is large, passing by the regime of coherent emission in

between, with g
(2)
2 (τ) = 1. In the later case, the bun-

dles are randomly distributed, which means that the
emitter is coherent, in the sense of Glauber who un-
derstood that quantum optical coherence is linked to

the statistics of the quanta, rather than to monochro-
maticity. This criterion is now commonly accepted to
define lasing, for instance, the “atom laser” refers to a
coherent matter wave, not to stimulated emission. To
rigorously qualify our source as a laser of N -photon
states, we have to show that the bundles are Poisson
distributed not only at the level of pairs of bundles, i.e.,

that g
(2)
2 (τ) = 1 as was shown in the text, but to all

orders. This is shown in Fig. S6b with g
(3)
2 (τ1, τ2) that

is seen to be close to 1, except in the jitter window (at
small τ ’s), where the bundle can be resolved into its un-
derlying photons. Since g(n) magnifies correlations as n
increases, the approximation to a white square (corre-
sponding to an ideal coherent signal) is actually excel-
lent. Outside of the resonance, when the system does
not behave as a N -photon emitter, the generalized cor-

relation functions g
(n)
N show no particular feature. This

is illustrated in Fig. S6c for the case of lasing, where the
sharp vertical line at (ωL − ωa)/g ≈ 34.6 shows coher-
ent bundle emission when hitting the resonance. The
second order correlation function of the cavity field is
not equal to one in the regime of coherent bundle emis-
sion (Fig. 4h of the text), so the cavity emission is not
coherent if counting photons one by one. It becomes so
at the N -photon level.

VI. EFFECT OF DECOHERENCE.

We have presented the scheme so far in an ideal sys-
tem that suffers from no source of noise or decoherence
apart from decay. It is one of the challenges of technol-
ogy to keep these under control or remove them alto-
gether to achieve any working quantum technology. It
is still useful, however, to judge the present day feasi-
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FIG. S7: (Colour online) Effect of the principal sources of
noise in a semiconductor platform on the purity of two-
photon emission in the regime where it is optimum. Rates
of pure dephasing γφ (dashed blue) and cavity feeding at
positive detuning γr (solid red) are varied independently
up to the Rabi rate g of resonant exchange between the
dot and the cavity. The mechanism is very robust against
the generic source of decoherence that is pure dephasing γφ
and is more sensible to cavity feeding γr. Values from the
literature show that one can expect extremely performing
N–photon emitters already with currently available sam-
ples.

bility of the proposed device by considering the impact
of noise on its efficiency. We study in this Section the
effect of both a generic source of decoherence, pure de-
phasing [8, 24], and of a particular source that is spe-
cific to semiconductor cavity QED in the configuration
of our study, namely, cavity feeding [7, 25–28]. The
former washes out the quantum coherence that links
pure states, leading to a mixed density matrix. It is
caused by a variety of detrimental agents, such as weak
coupling to external baths, interactions, etc., and could
be present to some extent in all experiments regardless
of their implementation. The latter, cavity feeding, is
proper to semiconductors and can be important even
with a large detuning between the QE and the cav-
ity. It is caused by the phonon-mediated transfer of
an excitation between the QE—in this case, a quan-
tum dot—and the cavity. The transfer can be predom-
inant either from the QE to the cavity or the other way
around depending on the detuning. The configuration
of negative detuning ∆, when the dot is blue-detuned
as compared to the cavity, is particularly harmful to the
mechanism, since this is the one that transfers mainly
towards the cavity due to an unavoidable spontaneous
emission, therefore spoiling it with uncorrelated events.
The reversed process, that transfers towards the dot, is
assisted by the population of phonons available at the
transition frequency nph(∆) = 1/(e∆/[kBT ] − 1) with
no spontaneous emission term, and can thus be made
small by lowering the temperature T . On the other
hand, with negative detuning, the importance of these
processes is reversed. As the scheme presented in the
text is otherwise symmetric with respect to detuning,
we will consider only the favourable red-detuned config-

uration. The model is extended to include these sources
of decoherence and dephasing by adding to the master
equation the three terms of the second line [7]:

ρ̇ = −i [H, ρ] +
[γa

2
La +

γσ
2
Lσ

+
γφ
2
Lσ†σ +

(1 + nph)γr
2

Lσ†a +
nphγr

2
La†σ

]
ρ , (11)

which are, like the decay terms, in the Lindblad form
(Methods). The rate γφ accounts for the pure de-
phasing of the QE, while γr accounts for the phonon
mediated coupling between the QD and the cavity.
The case written is for negative detuning; the positive
detuning counterpart exchanges the prefactors of the
terms L(σ†a) and L(a†σ). The same procedure and
analysis as detailed in the text can be carried out in the
presence of these terms. We have considered them both
independently in the regime of two-photon emission for
the parameters of the text. The results are condensed in
Fig. S7. Note that we did not look for the maximum pu-
rity of two-photon emission but considered how the op-
timum case without dephasing is affected by these two
sources of decoherence. It is conceivable that the new
terms are less harmful in other regimes (say at lower
pumping) and that higher purities could be achieved in
their presence. The figure shows that while decoherence
does affect the purity of emission, the mechanism ex-
hibits some robustness, with extended plateaus that set
a goal for an optimum technology, while a fundamental
demonstration appears within reach even in extremely
noisy samples.

There is a clear physical reason why the mechanism
is so resistant to dephasing. The main attribute to pre-
serve is the bundle itself, that is to say, what is crucial
is to maintain the ability of the system to release its
energy exclusively in multiples of N . Now, the bun-
dle emission takes place in a very small time window,
that can be disrupted only for extremely large dephas-
ing rates. The effect of dephasing for the rest of the
time can have detrimental effects on other attributes
such as the intensity of emission, but this is of little
or no incidence for the usefulness of the device. This is
the case for cavity feeding in the red-detuned configura-
tion, where the transfer towards the dot can reduce the
intensity of emission by blocking the QD. The excited
QD releases its energy in a different solid angle and at a
different frequency than the N -photon emission chan-
nel, so its spurious excitation is not damaging. As for
the possibility to destroy a bundle by diverting one of
its photons towards the QD rather than through the
useful channel, since this is possible within the short
time-window of emission only, this affects very little
the purity. The scheme is even more resilient to pure
dephasing, which is the most universal type of decoher-
ence that one can expect to find in any system. The
physical reason is also linked to the mechanism of bun-
dles production, and is even less deleterious because it
harms the QE alone with no concomitant penalty to
the cavity. For most of the time, the QE undergoes
Rabi oscillations driven by the laser. Their dephasing
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is a cause of impediment for the buildup of the proba-
bility to have two photons, but this merely slows down
the repetition rate. Once the state collapses, the whole
cascade of photon emission unravels in the short time
window, essentially shielded from dephasing of the QE.
As a result, even with a considerable dephasing rate
equal to the Rabi coupling rate, the mechanism still
produces over 50% of two-photon bundles.

Now, in order to contrast Fig. S7 with the experi-
mental state of the art: the semiconductor cavity QED
literature reports largely varying values of dephasing
rates, indicating that much room exists for optimiza-
tion of the samples and reducing the sources of noise.
Pure dephasing rates of γφ/g = 0.3 have been esti-
mated in the strong-coupling of a quantum dot to a
microcavity at low temperature [24], and values as low
as γφ/g = 0.025 have been reported a few years later
in similar semiconductor systems [7], with also a cavity
feeding estimated at γr/g = 0.025. This shows that
even the most noisy environment should already pro-
vide close to ideal two-photon emission. In atomic plat-
forms, dephasing is so small that it is often neglected
to fit the experimental results [29]. As for circuit QED,
it has already reached the stage where dephasing is ut-
terly negligible [30].
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