Supplemental Data

A)

Supplemental Figure 1: The development of *itk*^{-/-} CD4⁺ PLZF⁺ $\alpha\beta$ T cells is not dependent on β 2-microglobulin.

Thymocytes from WT, *itk*^{-/-}, $\beta 2m^{-/-}$ and *itk*/ $\beta 2m^{-/-}$ mice were isolated and stained with CD1d-tetramer and antibodies to CD4, TCR δ , TCR β , and PLZF.

(A) Dot-plots show CD4 versus PLZF staining of total thymocytes; numbers indicate the percentages of CD4⁺ PLZF⁺ cells.

(B) Dot-plots show TCR β versus TCR δ staining on CD4⁺ PLZF⁺ thymocytes. Numbers indicate the percentages of cells in each quadrant.

(C) Histograms show CD1d-tetramer staining on CD4⁺ PLZF⁺ TCR β^+ thymocytes.

(D) Graph shows a compilation of data indicating absolute numbers of CD4⁺ PLZF⁺ TCR β^+ CD1d-tetramer^{neg} thymocytes.

n = 5-10 mice per group. Results are representative of three independent experiments. Statistical analysis was performed using a one-way ANOVA. *p < 0.05, **p < 0.005, ****p < 0.0001

Supplemental Figure 2. The development of *itk*^{-/-} innate PLZF⁺ CD4⁺ cells is independent on $\gamma\delta$ T cells.

Thymocytes from WT, *itk*^{-/-}, *tcrd*^{-/-} and *itk/tcrd*^{-/-} mice were isolated and stained with CD1d-tetramer and antibodies to CD4, CD8, TCR β , HSA (CD24), and PLZF.

(A) Dot-plots show CD44 versus PLZF staining of CD4SP CD1d Tetramer^{neg} TCR β^{high} HSA^{low} thymocytes

(B) Frequency of CD44^{high} PLZF⁺ CD4SP CD1d Tetramer^{neg} TCR β^{high} HSA^{low} thymocytes

(C) Number of CD44^{high} PLZF⁺ CD4SP CD1d Tetramer^{neg} TCR β^{high} HSA^{low} thymocytes

n = 4-7 mice per group. Results are from two independent experiments. Statistical analysis was performed using a one-way ANOVA. *p < 0.05, ***p < 0.0005, ****p < 0.0001

CD4⁺ PLZF⁺ TCR δ^{neg} TCR β^+ CD1d tetramer^{neg}

B)

Supplemental Figure 3. Peripheral expansion of *itk*^{-/-} innate PLZF⁺ CD4⁺ $\alpha\beta$ T cells increases in the absence of IL-15. Thymocytes from WT, *itk*^{-/-}, *il15*^{-/-}, and *itk/il15*^{-/-} mice were harvested, processed, and stained with CD1d tetramer and with antibodies against CD4, TCR δ , TCR β , and PLZF.

(A, C, E) Graphs show compilation of indicating the frequency of CD4⁺ PLZF⁺ TCR δ^{neg} TCR $\beta^{\text{+}}$ CD1d tetramer^{neg} thymocytes (top), splenocytes (middle), or mesenteric lymphocytes (bottom). (B, D, F) Graphs show compilation of indicating the number of CD4⁺ PLZF⁺ TCR δ^{neg} TCR $\beta^{\text{+}}$ CD1d tetramer^{neg} thymocytes (top), splenocytes (middle), or mesenteric lymphocytes (bottom). *n* = 6-7 mice per group. Results are representative of three independent experiments. Statistical analysis was performed using a one-way ANOVA. *p < 0.05, **p < 0.005, ***p < 0.0005, ****p < 0.0001

CD4 SP TCR δ^{neg} TCR β^{+} HSA^{low} CD1d tetramer^{neg} Eomesodermin⁺ E) ** F)

	VVI	Itk KO	VVI	Itk KO	VV I	Itk KO	VV I	ltk KO	VV I	Itk KO	VV I	Itk KO	VV	I It K	k D	VVI	Itk KC
Anitbiotics	-		-	F		-	-	F	-	-	-	⊢ F		-	-	-	ł

Supplemental Figure 4. *itk^{-/-}* innate PLZF⁺ CD4⁺ T cells promote the expansion of innate-like lymphocytes.

Thymocytes and mLN from WT and *itk*^{-/-} mice untreated or treated with antibiotics were isolated and stained with CD1d-tetramer and antibodies to CD4, CD8, TCR δ , TCR β , HSA, CD44, Eomes, and PLZF.

(A,B) Graph shows a compilation of data indicating the total cellularity of the thymus (A) or mesenteric lymph nodes (B).

(C,D) Graph shows a compilation of data indicating the absolute number (right) or frequency (left) of CD8⁺ TCR β^+ HSA^{low} Eomes⁺ lymphocytes from the thymus (C) or mesenteric lymph node (D).

(E,F) Graph shows a compilation of data indicating the absolute number (right) or frequency (left) of CD4⁺ TCR δ^{neg} TCR β^{+} CD1d tetramer^{neg} HSA^{low} Eomes⁺ lymphocytes from the thymus (E) or mesenteric lymph node (F).

(G,H) Graph shows a compilation of data indicating the absolute number (right) or frequency (left) of $CD4^{+}$ TCR δ^{+} PLZF⁺ lymphocytes from the thymus (G) or mesenteric lymph node (H).

(I,J) Graph shows a compilation of data indicating the absolute number (right) or frequency (left) of iNKT (CD4⁺ TCR δ^{neg} TCR β^{+} CD1d tetramer^{pos} PLZF⁺) lymphocytes from the thymus (I) or mesenteric lymph node (J).

n = 4-7 mice per group. Results are representative of two independent experiments. Statistical analysis was performed using a one-way ANOVA. *p < 0.05 **p < 0.005 ***p < 0.0005 ****p < 0.0001