Supplementary Materials for

# Vampire bats exhibit evolutionary reduction of bitter taste receptor genes common to other bats

# Authors:

Wei Hong, and Huabin Zhao<sup>\*</sup> (E-mail: huabinzhao@whu.edu.cn)

# Affiliation:

Department of Zoology, College of Life Sciences, Wuhan University, Wuhan, China

# This PDF file includes:

Supplementary text 1

Tables S1 to S4

Figures S1 to S4

#### Supplementary Text 1. Description of selection tests on Calhm1 in bats.

To test whether functional relaxation of taste signaling pathway happened along with substantial reduction of taste sensation in vampire bats, we conducted three selection tests for *Calhm1* that are similar to those for *T2R*s. Briefly, we found that, 1) the average  $\omega$  ratio of *Calhm1* for all branches was significantly smaller than 1 ( $P = 1.9 \times 10^{-154}$ ) after comparing model A with model B (table 1); 2) the  $\omega$  ratio estimated for the common ancestor of vampire bats was not significantly different from that of the rest of tree (P = 0.985) (see the comparsion between model C and model D in table 1); 3) a model (model F in table 1) allowing  $\omega$  variation between the ancestral branch of vampire bats and the four branches linking the three vampire bats was not significantly better fit to the data than the null model (P = 0.119) (model E in table 1). For details of parameter estimates for selection tests on bat *Calhm1*, see Table S4. Together, these results suggest that *Calhm1* is under strong purifying selection in bats, and that functional relaxation on the taste signaling pathway was not observed in vampire bats.

| Classification     |                         | Common name                     | Scientific name        |
|--------------------|-------------------------|---------------------------------|------------------------|
| Suborder           | Family Pteropodidae     | Geoffroy's rousette fruit bat   | Rousettus amplex       |
| YINPTEROCHIROPTERA |                         | greenish naked-backed fruit bat | Dobsonia inermis       |
|                    |                         | large flying fox                | Pteropus vampyrus      |
|                    |                         | black flying fox                | Pteropus alecto        |
|                    | Family Rhinolophidae    | cyclops leaf-nosed bat          | Hipposideros cyclops   |
|                    |                         | Pearson's horseshoe bat         | Rhinolophus pearsonii  |
| Suborder           | Family Phyllostomidae   | Gervais's fruit-eating bat      | Artibeus cinereus      |
| YANGOCHIROPTERA    |                         | Seba's short-tailed bat         | Carollia perspicillata |
|                    |                         | common vampire bat              | Desmodus rotundus      |
|                    |                         | white-winged vampire bat        | Diaemus youngi         |
|                    |                         | hairy-legged vampire bat        | Diphylla ecaudata      |
|                    | Family Mormoopidae      | Parnell's mustached bat         | Pteronotus parnellii   |
|                    | Family Vespertilionidae | little brown bat                | Myotis lucifugus       |
|                    |                         | David's myotis                  | Myotis davidii         |

 Table S1. Species examined in this study.

| Amplified gene         | Primer name                                      | Primer sequence (5'-3') | Primer pair <sup>*</sup> |
|------------------------|--------------------------------------------------|-------------------------|--------------------------|
| T2R1                   | M R41 1621119                                    |                         | forward                  |
| 1 41/1                 | M R41 10/11/20                                   | TGATCAGGCAGAGAAAGATG    | forward                  |
|                        | M_R41_104020<br>M_R41_827I_23                    | CTTAGGATTTCCTAAAATTAAGA | reverse                  |
|                        | M_R41_027E23                                     |                         | reverse                  |
| T7R3                   | $T_{2R20} 7118$                                  | GGACTCACAGAGTGGGTG      | forward                  |
| 1285                   | $T2R20_7010$<br>T2R20_48U20                      | GTTCTTTCTGGGAATGCTGG    | forward                  |
|                        | T2R20_40020                                      | CACAAATGTCTGCTTCAGCT    | reverse                  |
|                        | T2R20_005L19                                     | GACTTCAGACGACCAGACT     | reverse                  |
| T2R4                   | $T_{2R19} = 56U_{20}$                            | CAGGACTCATTGTGAATCTG    | forward                  |
| 121()                  | $T_{2R19}_{86U20}$                               | TGGTCAACTACAAGACTTGG    | forward                  |
|                        | T2R19_824L22                                     | AGAATAATGAGAACAGAATGTC  | reverse                  |
|                        | T2R19_871L21                                     | GAAACAGAGAATCTTCTTTGC   | reverse                  |
| T2R5                   | $T_{2R17} = 1112$                                | ACTGCTGATGGTGGTGGCA     | forward                  |
|                        | $T_{2R17} 45U21$                                 | TGAATTTCTCATTGGCCTGGT   | forward                  |
|                        | $T_{2R17} = 13.021$<br>T2R17_818L20              | TTTCATCCTGGGATTCCCCA    | reverse                  |
|                        | T2R17_839L20                                     | CAGGATTCTCTGACAAGCCT    | reverse                  |
| T2R7                   | $T_{2R9} = 16U_{20}$                             | AGCAACACCTTAATGATCAT    | forward                  |
| 121()                  | $T_{2R9} = 55U_{20}$                             | ATGGGAATCTTAGGAAATGC    | forward                  |
|                        | T2R9_879L20                                      | GCACCTTTAGAAATGCTTGT    | reverse                  |
|                        | $T_{2R9} = 0.0000000000000000000000000000000000$ | TCTTTTCAGGATATATGTTACT  | reverse                  |
| T2R38                  | M R26 87U21                                      | GATTCTGGTCAATGTCTTCAT   | forward                  |
| 12130                  | $T_{2R31} 17U18$                                 | CCGTCGTCACTGTGTCCT      | forward                  |
|                        | $T_2R_{31} - 76U19$                              | TTCGTGGTGGGGGATTCTGG    | forward                  |
|                        | M R26 712L18                                     | GATGTGGGCCTCCAGGCT      | reverse                  |
|                        | T2R31_919L18                                     | CAGGATGGCGTCCACAGC      | reverse                  |
| T2R39                  | $T_{2R10} 57U_{21}$                              | AACTTTCACAATTATAGGCAC   | forward                  |
| 12107                  | M R28 158U19                                     | CCACAAGTGGCAGGATCCT     | forward                  |
|                        | T2R10_880L19                                     | GATTGCCCAAGATCAGTAG     | reverse                  |
|                        | T2R10_914L18                                     | GTTGAAGCCGCTTCCAGG      | reverse                  |
|                        | M R28 798L20                                     | TGGCATTGAAGATGTTGGAC    | reverse                  |
| T2R40                  | T2R11 26U19                                      | CGGATAAAGGCATGTCCAG     | forward                  |
|                        | T2R11 40U22                                      | TCCAGATTTAAAATCGTCTTCA  | forward                  |
|                        | T2R11 893L18                                     | TCAGGCCAGGATTGCCCA      | reverse                  |
|                        | T2R11 917L18                                     | ACTGCAGCCGCTTCCAGG      | reverse                  |
| T2R42                  | T2R22 31U21                                      | GTACTGTCAATAGCAGAATTC   | forward                  |
|                        | T2R22_66U20                                      | GGGAAATGTGTTCATTGGAC    | forward                  |
|                        | T2R22 867L21                                     | TTCAAGATTGTCTGTCTTAGC   | reverse                  |
|                        | T2R22 927L22                                     | CTATCTGTAAATCTGTAACAGA  | reverse                  |
| <i>T1R3</i>            | T1R3-re2-F                                       | ACCAGGACAGCCCCTTGGT     | forward                  |
|                        | T1R3-re2-R                                       | GGGGCATGAAGGAGATCCAG    | reverse                  |
| <i>Calhm1</i> (exon 1) | CALHM1e1p2-F                                     | GCAGCGGTGAGGTGGGAGG     | forward                  |
|                        | CALHM1e1p2-R                                     | CCCCTCACCTGGGAGATGCAG   | reverse                  |
| <i>Calhm1</i> (exon 2) | CALHM1e2p3-F                                     | CTCTCCCATGCAGGCACTG     | forward                  |
| · · /                  | CALHM1e2p3-R                                     | GGCCACAGCTCACACTTTGC    | reverse                  |

| Table S2. P | rimers used | in th | nis study. |
|-------------|-------------|-------|------------|
|-------------|-------------|-------|------------|

\* Each forward primer can pair with each reverse primer.

**Table S3**. *T2R*s of the four bats with available genome sequences. Intact genes are characterized by complete and intact ORFs, partial genes contain incomplete and intact ORFs due to incomplete genome sequences, and pseudogenes are characterized by disrupted ORFs due to nonsense or frame-shifting mutations.

| Species           | Gene number |         |            |       | Percent of  |
|-------------------|-------------|---------|------------|-------|-------------|
|                   | Intact      | Partial | Pseudogene | Total | pseudogenes |
| Myotis davidii    | 25          | 4       | 10         | 39    | 25.6%       |
| Myotis lucifugus  | 27          | 0       | 7          | 34    | 20.6%       |
| Pteropus alecto   | 13          | 0       | 13         | 26    | 50.0%       |
| Pteropus vampyrus | 14          | 0       | 10         | 24    | 41.7%       |

**Table S4.** Likelihood values and parameter estimates for likelihood ratio tests of selective pressures on bat *T2R*s and *Calhm1*. The assumption of each model was given in table 1.

|        | Model A                   | Model B                   | Model C                   | Model D                                        | Model E                                        | Model F                                                                  |
|--------|---------------------------|---------------------------|---------------------------|------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------|
| T2R1   | ln <i>L</i> =-3427.132844 | ln <i>L</i> =-3428.833944 | ln <i>L</i> =-3527.065761 | ln <i>L</i> =-3526.200984                      | ln <i>L</i> =-3627.802949                      | ln <i>L</i> =-3627.174896                                                |
|        | ω=0.8276                  | ω=1                       | ω=0.8263                  | $\omega_1=0.8430, \omega_2=0.3047$             | ω <sub>1</sub> =0.8730, ω <sub>2</sub> =0.7150 | $\omega_1$ =0.8695, $\omega_2$ =1.0069, $\omega_3$ =0.3313               |
| T2R3   | ln <i>L</i> =-4263.749638 | ln <i>L</i> =-4275.088529 | ln <i>L</i> =-4400.220476 | ln <i>L</i> =-4399.407653                      | ln <i>L</i> =-4053.415269                      | ln <i>L</i> =-4052.104084                                                |
|        | ω=0.6585                  | ω=1                       | ω=0.6697                  | $\omega_1$ =0.6594, $\omega_2$ =1.8957         | ω <sub>1</sub> =0.7100, ω <sub>2</sub> =0.7281 | $\omega_1$ =0.6941, $\omega_2$ =0.8084, $\omega_3$ =3.5745               |
| T2R4   | ln L=-3209.936509         | ln <i>L</i> =-3225.293118 | ln <i>L</i> =-2621.778461 | ln <i>L</i> =-2621.229081                      | ln <i>L</i> =-2825.868116                      | ln <i>L</i> =-2825.543076                                                |
|        | ω=0.572                   | ω=1                       | ω=0.5854                  | $\omega_1$ =0.6006, $\omega_2$ =0.2878         | ω <sub>1</sub> =0.6178, ω <sub>2</sub> =0.7636 | $\omega_1$ =0.6300, $\omega_2$ =0.8823, $\omega_3$ =0.3936               |
| T2R5   | ln L=-3428.39021          | ln <i>L</i> =-3442.627536 | ln <i>L</i> =-3427.53808  | ln <i>L</i> =-3427.312371                      | ln <i>L</i> =-3430.459055                      | ln <i>L</i> =-3430.459055                                                |
|        | ω=0.5908                  | ω=1                       | ω=0.5837                  | $\omega_1$ =0.2643, $\omega_2$ =0.3578         | ω <sub>1</sub> =0.2726, ω <sub>2</sub> =0.3941 | $\omega_1$ =0.6036, $\omega_2$ =1.0264, $\omega_3$ =0.2059               |
| T2R7   | ln <i>L</i> =-1905.509419 | ln <i>L</i> =-1910.159618 | ln <i>L</i> =-1917.232499 | ln <i>L</i> =-1917.232491                      | ln <i>L</i> =-2069.501724                      | ln <i>L</i> =-2069.08614                                                 |
|        | ω=0.64228                 | ω=1                       | ω=0.6421                  | $\omega_1$ =0.6421, $\omega_2$ =239.4661       | ω <sub>1</sub> =0.6435, ω <sub>2</sub> =0.2534 | $\omega_1$ =0.617, $\omega_2$ =0.1052, $\omega_3$ =1.3055                |
| T2R38  | ln <i>L</i> =-2815.328795 | ln L=-2867.976306         | ln <i>L</i> =-2705.549881 | ln <i>L</i> =-2705.545709                      | ln <i>L</i> =-3174.197658                      | ln <i>L</i> =-3174.677814                                                |
|        | ω=0.3296                  | ω=1                       | ω=0.3566                  | $\omega_1 = 0.3571, \omega_2 = 0.3311$         | ω <sub>1</sub> =0.3450, ω <sub>2</sub> =0.4829 | $\omega_1$ =0.3460, $\omega_2$ =0.4928, $\omega_3$ =0.5434               |
| T2R39  | ln <i>L</i> =-3071.946349 | ln <i>L</i> =-3082.233326 | ln <i>L</i> =-2274.85814  | ln <i>L</i> =-2274.589168                      | ln <i>L</i> =-2643.864733                      | ln <i>L</i> =-2643.851076                                                |
|        | ω=0.6112                  | ω=1                       | ω=0.4388                  | $\omega_1$ =0.4282, $\omega_2$ =0.6227         | ω <sub>1</sub> =0.5368, ω <sub>2</sub> =0.7020 | $\omega_1$ =0.5374, $\omega_2$ =0.7233, $\omega_3$ =0.6518               |
| T2R40  | ln <i>L</i> =-1933.761815 | ln <i>L</i> =-1981.834222 | ln <i>L</i> =-1976.861014 | ln <i>L</i> =-1976.848337                      | ln <i>L</i> =-2279.690887                      | ln <i>L</i> =-2278.46542                                                 |
|        | ω=0.2643                  | ω=1                       | ω=0.2654                  | $\omega_1$ =0.2643, $\omega_2$ =0.3578         | ω <sub>1</sub> =0.2726, ω <sub>2</sub> =0.3941 | $\omega_1$ =0.2639, $\omega_2$ =0.5168, $\omega_3$ =0.4964               |
| T2R42  | ln <i>L</i> =-3238.165213 | ln <i>L</i> =-3238.214621 | ln <i>L</i> =-3213.889067 | ln <i>L</i> =-3213.834829                      | ln <i>L</i> =-4086.161606                      | ln <i>L</i> =-4086.275863                                                |
|        | ω=0.9668                  | ω=1                       | ω=0.8962                  | ω <sub>1</sub> =0.9100, ω <sub>2</sub> =0.8327 | $\omega_1$ =0.9078, $\omega_2$ =0.7592         | $\omega_1=0.8587, \omega_2=0.5558, \omega_3=1.1973$                      |
| Calhm1 | ln <i>L</i> =-3205.467111 | ln <i>L</i> =-3555.917574 | ln <i>L</i> =-3255.222199 | ln <i>L</i> =-3255.222033                      | ln <i>L</i> =-3517.697681                      | ln <i>L</i> =-3516.483621                                                |
|        | ω=0.0565                  | ω=1                       | ω=0.0557                  | $\omega_1$ =0.0557, $\omega_2$ =0.0001         | ω <sub>1</sub> =0.0558, ω <sub>2</sub> =0.0683 | ω <sub>1</sub> =0.0576, ω <sub>2</sub> =0.0390, ω <sub>3</sub> =223.3136 |

### **Figure legends:**

**Figure S1.** Phylogenetic positions of bats revealed by *Cytb* genes, which were newly sequenced or obtained from the GenBank (indicated with an asterisk). The tree was constructed with the Bayesian method, and numbers at the nodes are the Bayesian posterior probabilities as percentages.

**Figure S2.** Evolutionary relationships of all intact *T2Rs* from the four bats with available genome sequences. A total of 211 codons were used to reconstruct a maximum-likelihood tree with the Bayesian method. The tree was rooted with the mouse *V1Rd8* and *V1Re9*, and numbers at the nodes are the Bayesian posterior probabilities as percentages. Species include *Pteropus vampyrus* (Ptva), *P. alecto* (Ptal), *Myotis lucifugus* (Mylu), and *M. davidii* (Myda).

**Figure S3.** Phylogenetic trees of each T2R gene in all bats using the Bayesian method. The Bayesian trees were rooted with the orthologous genes in humans, and numbers at the nodes are the Bayesian posterior probabilities as percentages.

**Figure S4**. An alignment of *T1R3* encoding the shared subunit of sweet and umami tastes in two vampire bats (*D. rotundus* and *D. ecaudata*), one megabat (*P. vampyrus*), and dog (*C. familiaris*). *D. rotundus* was sequenced previously [ref. 10 in the main text] while *D. ecaudata* was sequenced in this study (GenBank Accession no. KJ557282). Dashes indicate alignment gaps and question marks represent unamplified nucleotides, regions corresponding to transmembrane domains are boxed.

# Figure S1







0.1

#### Figure S3 continued

- Artibeus cinereus

Diaemus youngi

– Diphylla ecaudata

- Carollia perspicillata

Desmodus rotundus



T2R40



| C  | familiaris |  |
|----|------------|--|
| ι. | jumilluris |  |

#### P. vampyrus

D. rotundus

D. ecaudata

#### 360

#### 480

#### 600

#### 720

#### 840

#### 960

969 AATGAGTGA ????????? ??????????