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SI Materials and Methods
Participants. A total of 218 (103 female) undergraduates were
recruited from the Behavioral × Biological Economics and Social
Sciences (B2ESS) Laboratory at the National University of
Singapore. All participants were of ethnic Han Chinese back-
ground and had undergone full genome sequencing. A total of
217 (103 female) participants were included in the final analysis
after one subject was excluded owing to genotype unavailability.

Procedure. Behavioral data were collected from subjects playing
the patent race game in 1-h sessions of 18–24 subjects. In the
patent race game, programmed in zTree (1), two players take the
role of firms competing to develop a new product. The product is
worth a fixed prize and firms are given an endowment to invest.
In the asymmetric version of the game we used, the prize is worth
$10 and the two players begin each round with endowments of $5
and $4 and are referred to as the “strong” and “weak” players,
respectively.
Players can invest any integer amount from their endowment.

The investments are subtracted from the potential earnings. To
win the prize, one must invest strictly more than the opponent.
For example, if the strong player invests $4 and the weak player
invests $2, the payoff that round to the strong player is $5 − $4 +
$10 = $11, whereas the payoff to the weak player is $4 − $2 = $2.
Players’ endowments do not carry over from round to round, so
the maximum investment available is always either four (for the
weak type) or five (for the strong type).
At the beginning of each round, each player was randomly

matched with a player of the other type. They played 120 rounds
in each role, counterbalanced, for 240 rounds in total. They were
fully informed of the rules and matching procedures. Compen-
sation was equal to 10 Singapore dollars (SGD) plus either the
average earnings per round or 7 SGD, whichever was higher.
To illustrate how players can anticipate and respond to the

actions of others in this game, suppose the weak player observes
the strong players frequently investing 5 units. He may sub-
sequently respond by playing 0 to keep his initial endowment.
Upon observing this, strong players can exploit the weak player’s
behavior by investing only 1 unit to obtain both the prize while
keeping 4 units from the endowment. This may in turn entice the
weak player to move away from investing 0 to win the prize. In
contrast, pure reinforcement-learning (RL) players will respond
to these changes in opponents’ behavior in a much slower
manner, because they behave by comparing received payoffs
from past investments without consideration for the strategic
behavior of others (2).

Genotyping. DNA was extracted from blood samples using
QIAamp DNA Blood Midi Kit (Quiagen). SNP genotyping was
performed at the Genome Institute of Singapore with Human-
OmniExpress-12 v1.0 DNA Analysis Kit (Illumina Inc.). Over
730,000 genetic markers, primarily SNPs, across over 18,000
genes were collected from each subject.
All variable-number tandem repeats (VNTRs) were analyzed

with PCR products loaded onto 1.5% (wt/vol) agarose gel with
ethidium bromide, run for 1 h at 5 V/cm in Tris/borate/EDTA,
and visualized in a UV camera.
The DRD4 exon III VNTR was analyzed with HotStar Plus

DNA polymerase (0.3 U per reaction), 1× Q-solution, 1× Cor-
alLoad buffer (Qiagen), 200 μM of each dNTP, 200 nM of each
primer, and 10–20 ng of genomic DNA per reaction, in a volume
of 10 μL. Primer sequences were as follows: forward 5′- GCGAC-

TACGTGGTCTACTCG -3′, reverse 5′- AGGACCCTCATGGCC-
TTG -3′ (3). Thermal protocol included an activation step at –95 °C
for 5 min, 40 cycles of 94 °C for 30 s, 55 °C for 30 s, 72 °C for 40 s,
and final hold at 72 °C for 5 min.
The monoamine oxidase A (MAOA) VNTR was analyzed with

PCR ReddyMix Master Mix (Thermo Fisher Scientific), 200 nM
of each primer, and 10–20 ng of genomic DNA per reaction, in
a volume of 10 μL. Primer sequences were as follows: forward 5′-
ACAGCCTGACCGTGGA-3′, reverse 5′- GAACGGACGCTCCA-
TT-3′ (modified from ref. 4). The thermal protocol included an
activation step at –95 °C for 5 min, 35 cycles of 95 °C for 30 s, 58 °C
for 30 s, 72 °C for 60 s, and final hold at 72 °C for 5 min.
The dopamine transporter (DAT) VNTR was analyzed with

PCR ReddyMix Master Mix (Thermo Fisher Scientific), 100 nM
of each primer, 0.2% DMSO, and 10–20 ng of genomic DNA per
reaction, in a volume of 10 μL. Primer sequences were as follows:
forward 5′- TGTGGTGTAGGGAACGGCCTG-3′, reverse 5′- CTT-
CCTGGAGGTCACGGCTCA-3′ (modified from ref. 5). The ther-
mal protocol included an activation step at –95 °C for 5 min, 35 cycles
of 95 °C for 30 s, 61 °C for 30 s, 72 °C for 30 s, and final hold at 72 °C
for 10 min.

Gene Selection and Preprocessing. From the dopamine pathway
defined in the Kyoto Encyclopedia of Genes and Genomes da-
tabase, a manually curated collection of pathway maps widely
used in gene-set analysis, we included dopamine genes that are
involved in (i) dopamine synthesis [tyrosine hydroxylase (TH),
dopa decarboxylase (DDC), and vesicular monoamine transporter
(VMAT)], (ii) coding of dopamine receptors (DRD1–5; DRD5
was excluded from the final analysis owing to limited variation of
SNPs in the sample), and (iii) dopamine transport and clearance
[DAT1, catechol-O-methyl transferase (COMT), and MAOA/B].
For each gene, SNPs were included according to hg18 coordinates
and had minor allele frequency (MAF) exceeding 0.1.
SNP extraction and filtering was conducted using PLINK (6)

and snpStats (7). For each gene, SNPs were included if they were
contained according to hg18 coordinates and had MAF ex-
ceeding 0.1. To reduce dimensionality of the genetic information,
we represented each gene as a linear combination of orthogonal
vectors using principle component analysis (PCA). Specifically,
each analyzed gene is represented by a set of eigenvectors
(eigenSNPs) (8) from principal components accounting for at
least 90% of the total variation of that gene’s SNPs. Occasional
genotyping failures (less than 3% of all included SNPs had more than
2 out of 217 failures) were coded with the mean value of the SNP.

X-Chromosome Genes. Because MAOA/B genes reside on the
X-chromosome, there is substantial uncertainty regarding the
interpretation of allele scores across sex. We addressed this issue
in two ways. First, we estimated the model separating sex. Second,
we added a sex interaction term to account for multiplicative
effects. Both yielded results similar to our original model.

SI Computational Modeling
Base Experience-Weighted Attraction Model (No Genes). Choice be-
havior was modeled using the hybrid model experience-weighted
attraction (EWA) that has been widely used to characterize strategic
learning (9). Denote ski as strategy k for player i. Because
strategies in the patent race are investments from either a $5
or $4 endowment, k∈ f0; . . . ; 5g when player i is strong and
k∈ f0; . . . ; 4g when player i is weak. For period t∈ f1; . . . ; 120g,
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siðtÞ is the amount invested by player i at period t, and s−iðtÞ is the
chosen investment of the opponent at period t.
Player i’s (possibly counterfactual) payoff at period t for some

ski , given the opponent’s actual strategy s−iðtÞ, is equal to the
endowment less ski , plus the $10 prize if ski > s−iðtÞ. This potential
payoff is denoted as πiðski ; s−iðtÞÞ. Notice that, given s−iðtÞ, this
potential payoff differs from player i’s realized payoff in period t
except for when ski = siðtÞ.
Player i’s expected reward, Vk

i ðtÞ, for playing strategy ski in
period t is governed by two parameters and updates according to
the following:

Vk
i ðtÞ=

8>>>><
>>>>:

Nðt− 1Þ · ρ ·Vk
i ðt− 1Þ+ πi

�
ski ; s−iðtÞ

�
NðtÞ ; if ski = siðtÞ

Nðt− 1Þ · ρ ·Vk
i ðt− 1Þ+ δ · πi

�
ski ; s−iðtÞ

�
NðtÞ ; if ski ≠ siðtÞ

;

[S1]

where function NðtÞ= ρ ·Nðt− 1Þ+ 1 captures the depreciation of
Vk
i ðtÞ. If the player believes his opponent is a fast adaptor, he will

have a small ρ that depreciates past values faster. In contrast, δ
captures the weight between foregone payoffs and actual payoffs
when updating values. This corresponds to one of the key in-
sights of the hybrid model that belief learning is equivalent to
a model whereby actions are reinforced by foregone payoffs in
addition to received payoffs as in RL models. Thus, δ can be
interpreted as a psychological inclination toward belief learning
(9). That is, the hybrid model reduces to the RL model when
δ= 0 and the belief learning model when δ= 1.
To more concretely illustrate the effect of belief learning on

behavior, we contrast an EWA strong player with δ1 > 0 with an
RL strong player with δ2 = 0. Suppose our strong player i invests
$5 and the opponent invests $1. Both for EWA and RL the
value V 5

i will update to take into account the realized payoff
πið5; 1Þ= 10. Unlike the RL player, however, the EWA player
with δ1 > 0 will also update values associated with other actions,
even if they were not chosen. For example, in this case the EWA
player takes into account the hypothetical payoff π1ð2; 1Þ= 13
($10 prize + $3 saved from the endowment) based on the op-
ponent’s action. Note that as δ1 increases the greater the sensi-
tivity to the actions of the opponent, ultimately leading to
a higher probability that $2 will be invested in the next round
relative to $5.

Gene-WeightedModel.To account for gene variation, we allowed δ
or ρ to vary according to the set of eigenSNPs or VNTR dummy
variables. For example, in the case for the DAT1 gene, there
were three eigenSNPs, and thus we replace the δ parameter in
Eq. S1 with the individualized term

δGi = δ0 + δE1 ·Ei1 + δE2 ·Ei2 + δE3 ·Ei3;

where fEi1;Ei2;Ei3g refers to i’s three eigenSNP scores and the
associated parameters fδE1; δE2; δE3g refer to the coefficients on
the eigenSNPs. The same procedure is followed for the ρ param-
eter. Note that this approach implicitly assumes a linear allele–
dose–expression–response relationship. We relax this assump-
tion in later analyses by allowing for SNP–SNP interaction.

Behavioral Data Analysis. To calibrate the models given subjects’
behavior in the game, we estimated parameters of each model,
including initial condition Nð0Þ, using subjects’ responses by
maximizing the logistic log likelihood of the model predictions.
To convert values into choices, we used a logit or softmax
function to calculate the probability of player i playing strategy k

in the next round, pki ðt+ 1Þ= eλ·V
k
i ðtÞ=

PL
l=1e

λ·Vl
i ðtÞ, where λ is an

estimated parameter capturing subjects’ sensitivity to difference
in expected reward associated with the different actions.
Using choice probabilities calculated from the softmax func-

tion, we performed maximum likelihood estimation with a grid
search over a large range of values for all free parameters in all
estimations, because the likelihood function is not globally
concave. We aggregated observations conditional on the roles of
the subjects and then fit the choice data by maximizing the log
likelihood of the observed choices over rounds t for subject i. That
is,

P
i
P

tlogðpsiðtÞi ðtÞÞ. Maximum-likelihood estimation of param-
eters was performed using the quasi-Newton algorithm implemented
in the fminunc function in MATLAB. Approximately 100 random
or evenly spaced interior starting values were tried, all of which
produced essentially identical estimates.

Individual SNP Analysis.We compare our gene-set methodology to
other candidate gene approaches by analyzing a selection of
individual SNPs for each of the significant genes. These SNPs
were identified by cross-referencing the genetic markers available
to uswith the tagging SNPs suggested by the International HapMap
Project’s Generic Genome Browser (10). Appropriate tagging SNPs
were determined based on pairwise correlations (11). For reference
data, we used Han Chinese in Beijing in Data Rel 27 Phase II+III,
Feb 09, on NCBI B36 assembly, dbSNP b126. R2 and MAF cutoffs
were 0.8 and 0.1, respectively.

SNP–SNP Interactions. To account for SNP–SNP interactions, we
extended the eigenSNP approach by performing PCA on the set
of regressors produced from a third-order interaction of the
underlying SNP data. For example, if a gene contained 4 SNPs,
we performed PCA on the set of 84 regressors, resulting from 4
original SNPs, an additional 16 second-order interaction terms,
and a further additional 64 third-order interaction terms. Using
the same procedure as outlined above, we took the set of ei-
genSNPs that explained at least 90% of the variance and in-
cluded them in our computational model.

Permutation P Values.Under the permutation test null hypothesis,
individuals are interchangeable, so label-swapping provides a new
dataset sampled under the null hypothesis. In each permutation,
therefore, the within-gene correlations are preserved and only the
behavior–genotype relation is destroyed (6). For each gene, data
were permutated 1,000 times by shuffling the gene–subject
pairing. The reported P value is equal to the proportion of tests
where model fit of the permuted dataset improved upon those of
the original, unpermuted dataset.

Empirical P Values. Empirical P values were determined by com-
paring model fit of the gene within the dopamine pathway to
comparison genes across the entire genome but outside of the
dopamine pathway. A gene was considered comparable if (i) it
was represented by the same or similar number of SNPs and (ii)
these SNPs generated the same number of principal components
according to the procedure outlined above. A range of SNPs was
allowed in cases where an exact match produced too few genes
(Table S1). This typically occurred when there were a large
number of SNPs in the gene.

Formal Dissociation Test. To formally compare effect size of pre-
frontal and striatal dopamine genes on choice behavior, we
contrasted, using a bootstrap procedure, the mean eigenSNP
coefficients for COMT and MAOB against those for DAT1
and DRD2 (12). Specifically, for each of 1,000 iterations of
the bootstrap we created a pseudosample by sampling with
replacement behavioral and genetic data from 218 participants,
and performed maximum likelihood estimates as described
above. The resulting coefficients were standardized to ensure
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comparability across eigenSNPs, and the reported P value is
equal to the proportion of tests where the mean coefficient for
one gene set was greater than that of the other gene set.

SI Results
Predictive Accuracy of EWA Model. To assess the ability of our model
to capture choice behavior in the patent race, we compared actual
proportion of investment against predicted investment proportion
(Fig. S1A). This is equivalent to a scatterplot of the empirical and
EWA prediction proportions as reported in Table S2. Each point
represents an investment strategy, that is, strong investment of 5,
separately for strong and weak roles. The predicted investment
proportion was computed by averaging the round-by-round pre-
dictions of the baseline EWAmodel, aggregating all players over all
120 rounds. The dashed diagonal line represents perfect agreement
between the model predictions and actual play. As evident from
how closely each point lies to this line, model prediction and actual
play are in good agreement, with a χ2 test result of P< 10−8 and
a mean difference of less than 5%.
In addition, we sought to incorporate visualization of game

dynamics by separating predictions into 30-round blocks, with
blocks in the same sequence connected in a series (Fig. S1B). All
points lie near the diagonal line, confirming the success of the
hybrid model of capturing actual play at the finer temporal
resolution. The successful modeling of the relative dynamics is

also apparent in the generally diagonal pattern within each se-
quence of points. Although aggregating over rounds and subjects
understates the full range of behavior, these plots make clear
that the hybrid learning model performs well overall, including
the capturing of movements where static approaches are not able
to capture.
Note that we do not report a statistic such as R2 because of the

discrete nature of our dependent variable. This issue, as well as
model checking techniques such as the one we report above, has
been discussed in depth in both neuroimaging and neurophysi-
ological studies of decision making (13).

Incorporating SNP–SNP Interactions. Owing to the low explanatory
power of single SNPs, a frequent proposal is that there exists
substantial variation that can be explained by accounting for
SNP–SNP interactions (14). Accordingly, we investigated this
question using our gene-set approach by conducting PCA on
regressors formed using third-order interactions of SNPs within
a gene (SI Materials and Methods). Using the same 90% cutoff
rule, we found that incorporating SNP–SNP interactions im-
proved model fit of genes that were previously significant, in
particular COMT and DRD2 (Table S4). Interestingly, we did
not find qualitative changes in overall level of significance of
dopamine genes after accounting for SNP–SNP interactions.
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(A) Model Prediction of Investment Proportions (B) Model Prediction (30-round Blocks)
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Fig. S1. (A) Predicted and actual investment proportions for strong and weak players, averaged over all subjects for all rounds. Each point represents an
investment amount (weak, 0–4; strong: 0–5). (B) Identical to A except separated into 30-round blocks. Blocks are connected by series line.
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Table S1. Empirical and predicted choice distributions, calculated as proportion of all players’ choices over
all rounds

Role Investment Nash equilibrium, % Empirical distribution, % Conditional win percentage, % EWA prediction, %

Strong 0 0 0.4 0 0.9
1 20 20.2 55 19.1
2 0 5.1 57 5.2
3 20 12.3 69 10.2
4 0 14.3 77 11
5 60 47.8 100 53.6

Weak 0 60 51.9 0 40.0
1 0 2.0 0 9.4
2 20 12.2 22 17.3
3 0 9.7 27 13.1
4 20 24.2 38 20.3

Table S2. Share of the variance of the gene that can be explained by another gene as calculated using the
canonical correlation redundancy index (12)

Gene COMT,% DAT,% DDC,% DRD1,% DRD2,% DRD3,% DRD4,% MAOA,% MAOB,% TH,% VMAT2,%

COMT — 2.6 2.9 0.8 3.1 0.9 0.8 0.2 1.3 0.5 2.8
DAT1 2.1 — 2.3 1.2 2.0 1.9 0.9 0.4 1.6 1.0 3.6
DDC 2.9 2.8 — 1.3 2.5 1.6 0.8 0.8 1.4 1.5 3.2
DRD1 1.0 2.0 1.7 — 2.4 0.6 0.7 0.4 0.9 0.7 2.9
DRD2 2.5 2.0 2.0 1.5 — 1.4 1.1 0.7 1.9 3.0 4.3
DRD3 1.3 3.2 2.1 0.6 2.4 — 1.0 0.1 1.8 0.3 2.4
DRD4 3.2 4.6 3.2 2.0 5.4 3.0 — 0.1 2.1 1.0 1.6
MAOA 0.9 1.9 3.0 1.3 3.7 0.4 0.1 — 10.3 0.7 2.7
MAOB 1.7 2.7 1.8 0.9 3.2 1.8 0.7 3.4 — 1.5 1.5
TH 0.9 2.5 3.0 1.1 7.4 0.4 0.5 0.4 2.3 — 3.0
VMAT2 1.8 3.0 2.1 1.5 3.6 1.2 0.3 0.4 3.4 1.0 —

In the lower diagonal of the matrix, the row variable constitutes the dependent variable, and reversed for the upper diagonal. Note
the only gene that explained 10% or more of the variance of another gene was the MAOB gene, which explained 10.3% of MAOA
(which resides next to the MAOB gene on the X-chromosome) variation.

Table S3. Selection criteria for comparison genes outside of the
dopamine pathway

Gene SNPs ±

DRD1 5 0
DRD2 17 2
DRD3 6 0
DRD4 1 0
COMT 17 2
DAT1 9 1
MAOA 22 4
MAOB 28 6
TH 2 0
DDC 20 2
VMAT2 16 2
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Table S4. Gene properties and estimates in SNP–SNP interactions

Belief learning (δ) Discounting (ρ)

Function Gene PCs % Var LLR punc pperm LLR punc pperm

Synthesis TH 2 0.98 0.95 0.387 0.900 1.03 0.357 0.903
DDC 8 0.91 21.75 0.000 0.737 28.86 0.000 0.73
VMAT2 12 0.91 57.59 0.000 0.25 35.34 0.000 0.881

Transport/clearance DAT1 5 0.91 12.98 0.000 0.646 70.17 0.000 0.019
COMT 8 0.91 78.32 0.000 0.009 80.29 0.000 0.061
MAOA 1 0.97 10.60 0.000 0.100 0.08 0.689 0.905
MAOB 3 0.95 25.56 0.000 0.081 9.87 0.000 0.602

Receptor DRD1 3 0.99 3.84 0.053 0.819 7.98 0.001 0.72
DRD2 8 0.91 24.38 0.000 0.63 80.34 0.000 0.07
DRD3 3 0.97 3.49 0.073 0.841 12.76 0.000 0.50
DRD4 1 1.00 3.40 0.009 0.358 9.46 0.000 0.19

Owing to the low explanatory power of single SNPs, a frequent proposal is that there exists substantial
variation that can be explained by accounting for SNP–SNP interactions. We investigated this question using
our gene-set approach by conducting PCA on regressors formed using first-, second-, and third-order interactions
of SNPs within a gene. Using a 90% cutoff rule as before, we found that incorporating SNP–SNP interactions
improved model fit of a number of genes that were previously significant, particularly COMT and DRD2 (Table S3).
However, we did not find that previously insignificant genes became significant after accounting for SNP–SNP
interactions. PCA, principal component. % Var, percent of total variance captured by included PCs; LLR, log-
likelihood ratio (compared to no-gene baseline); punc, P value using likelihood ratio test; pperm, permutation P
value (see SI Materials and Methods); pemp, empirical P value (see SI Materials and Methods).
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