Supporting Information

Xie et al. 10.1073/pnas.1407709111

SI Text

1. China's Economic Growth

We measure China's economic growth with gross domestic product (GDP) data from Penn World Table Version 7.1 (PWT 7.1) (1). We chose to use Chinese data Version 2 for better international comparability (2). The trend from 1978 to 2010 is given in Fig. S1. The unit is the 2005 international dollar [purchasing-power-parity (PPP) adjusted US dollars at 2005 constant prices]. Between 1978 (967 billion) and 2010 (10,303 billion), the annual growth rate is 7.7%.

2. Postsecondary Education Attainment in China

We calculated the proportion of the Chinese population aged 25-29 y with college educations from the population censuses in China in 1982, 1990, 2000, and 2010 (3–6). Detailed results are given in Table S1. They show a rapid increase in the attainment of higher education over successive cohorts. Specifically, the share of college-educated Chinese aged 25–29 rose from 0.8% in 1982 to 3.3% in 1990, 6.7% in 2000, and 20.6% in 2010.

3. Science and Engineering Labor Force in China and the United States

Science and engineering (S/E) labor force data for both China and the United States came from respective national censuses, with additional data from the American Community Survey (ACS) 2009–2011 3-y sample. For both countries, we used a restricted occupation-based definition for scientist/engineer—an incumbent in an S/E occupation with at least a bachelor's degree. For China, we calculated the size of the S/E labor force based on tabulations from the 1982, 1990, 2000, and 2010 China censuses provided by the National Bureau of Statistics (3–6). For the United States, we calculated comparable figures based on public use 1% microdata from the 1980, 1990, and 2000 US censuses, as well as the 3% 2009–2011 ACS data (7).

In our analysis, S/E occupations include physical scientists, life scientists, mathematical scientists, and engineers but exclude social scientists. We grouped detailed occupational codes into major S/E fields, using a coding system that preserves comparability over time and across the two countries. In Table S2, we give an example of our coding system for the 1990 US census data, using harmonized occupational codes in Integrated Public Use Microdata Series 5.0 (7).

We present our summary results on the S/E labor force in Table S3. Besides giving the total size in both China and the United States, shown in the first row for each section, we break down these statistics into three subcategories: natural scientists, engineers, and computer-related scientists/engineers. In addition, we provide data on the percentage of women in the S/E labor force in both countries. To facilitate the comparison of the growth rate, Fig. S2 presents the United States' and China's S/E labor force sizes on a logged scale (compare with Fig. 1).

It seems surprising that the number of natural scientists in China declined from 1982 to 2000. This decline was likely a result of the Cultural Revolution (1966–1976). Institutions of higher education were closed for much of the Cultural Revolution, and they did not admit regular students in large numbers until the reintroduction of the examination-based admission system in 1977. This caused an interruption in the cohort succession of Chinese scientists. Fig. S3 shows the age structure of scientists in 1982 and 1990. The data are based on 1% census samples in 1982 and 1990. We observe a bulge in the number of scientists aged 40–49 in 1982 and aged 50–59 in 1990, a group who were educated before the Cultural Revolution. This large group of scientists had gradually retired by the year 2000, causing the decline in the number of natural scientists between 1982 and 2000.

4. Earnings of Selected Professionals

We computed the earnings ratio of scientists to those of four other high-status professionals-social scientists, medical doctors, lawyers, and engineers-in both China and the United States. Our analysis drew data from the 2005 1% minicensus survey in China and the 2006-2008 ACS. The 2005 minicensus survey in China, conducted by the National Bureau of Statistics of China, collected both demographic and economic information for a very large sample that represented 1% of the Chinese population (8). The ACS is an annual government survey collecting basic demographic and socioeconomic information about the American population. The 2006–2008 ACS is a 3-y pooled sample. Because the data contain only a single code for all academics, we imputed the number of academic scientists based on the share of academics within each field from the 1990 census. We restricted our data analysis to full-time, year-round-employed men (or employed persons working at least 35 h/wk in China) aged 30-55 with at least a bachelor's degree and nonzero income.

We obtained the earnings ratio of a particular profession to that of the scientist by estimating an ordinary linear regression of the logarithm of yearly earnings on a set of profession dummy variables (with scientists as the reference category), controlling for age, a square function of age, degree level of education (having an advanced degree = 1 and having a bachelor's degree = 0), and two dummy variables of hours of work per week (divided into 41–50 h and 51 h and above, with 35–40 h as the reference category). The following equation describes the relationship:

$$\begin{split} \log \, Inc &= \beta_0 + \beta_1 \text{soc} + \beta_2 \text{eng} + \beta_3 \text{doc} + \beta_4 \text{law} + \lambda_1 \text{age} \\ &+ \lambda_2 \text{age}^2 + \lambda_3 41 - 50\text{h} + \lambda_4 51\text{h} + \lambda_5 \text{advanced degree} + \lambda. \end{split}$$

The exponentiated coefficients for the other professions in the regression (β_1 to β_4) yielded the earnings ratios.

We present our regression results in Table S4: Column "b" gives the regression coefficient for each variable and column "Exp(b)" gives the exponential coefficient for each profession, representing the earnings ratio. Table S4 shows that scientists in China earn more than social scientists, doctors, and lawyers, but less than engineers. Engineers in China earn a 25% premium over scientists. The earnings of Chinese scientists are 25% higher than those of social scientists, 13% higher than those of medical doctors, and 5% higher than those of lawyers. By contrast, as Table S4 shows, American scientists earn less than the other high-status professional groups being compared. Their earnings are only 93% (= $100 \cdot [1/1.08]$) of social scientists' earnings, 83% of engineers', 50% of medical doctors', and 66% of lawyers'.

5. The Number of Higher Education Institutions in China

Historical counts of higher education institutions (HEIs) in China came from the Web site of the Ministry of Education of the People's Republic of China, which releases educational statistics for the years 1998–2010 (9). The term "higher education institution" refers to regular institutions of higher education, including universities and colleges providing degree-level programs, junior colleges (or short-cycle colleges), and vocational colleges. Table S5 summarizes the trends in the number of HEIs over the years.

6. Postsecondary S/E Education in China and the United States

We constructed China's degree production trends from two sources. Numbers of doctorates from 1993 to 1996 were retrieved from *Science and Engineering Indicators (SEI)* 2010 (10), and all others were based on various issues of *Educational Statistics Yearbook of China* (11). The yearbooks, however, do not provide information about bachelor's degrees between 1989 and 1997. To connect the series, we extrapolated the numbers of degrees for these years with constant annual growth rates between 1988 and 1998.

The US degree series came from the WebCASPAR Integrated Science and Engineering Resource Data System (12). We combined degrees across disciplinary categories to derive the numbers of S/E degrees. China degrees included those in natural sciences (*li ke*) and agricultural sciences (*nong ke*). For both countries, medical degrees were excluded.

In Table S6, we present trends in the bachelor's and doctoral S/E degree production in China and the United States. One obvious difference between China and the United States lies in the proportions of degrees in S/E. The difference is particularly pronounced at the bachelor's level. Over the period, the proportion of bachelor's degrees in S/E ranged from 15.1% to 18.5% in the United States but from 43.6% to 59% in China. For example, in 2010, China graduated a much higher percentage (43.6%) of S/E students than the United States (16%) at the undergraduate level. The disparity is also present, albeit less pronounced, at the doctoral level, again indicating China's greater concentration of higher educational resources in S/E.

Table S6 also shows the rapid expansion of Chinese S/E education. In absolute terms, China's S/E baccalaureate production caught up with that of the United States in 1991 and grew to more than four times that of the United States in two decades. In 2010, China graduated 1.13 million students with bachelor's degrees in S/E, whereas the United States graduated 0.26 million. China's population, however, was also much larger (1.34 billion) than that of the United States (0.31 billion). Divided by the total population size, the crude rate of scientific baccalaureate attainment happens to be the same for the United States (0.00084) and China (0.00085). To compare the growth rates of China and the United States, we plot out the degree trends on a log scale in Fig. S4 (compare with Fig. 3).

7. Chinese Students Studying S/E and Attaining S/E Doctoral Degrees in US Universities

The number of Chinese graduate students studying S/E in US universities between 1987 and 2010 came from *SEI* 2004, 2008, 2010, and 2012 (10, 13–15). The appendix table of *SEI* contains tabulations of foreign graduate student enrollment by field and selected place of origin. We constructed a series for Chinese students by field of study in US universities that is shown in Tables S7 and S8.

Data on S/E doctoral degrees awarded by US universities to Chinese citizens were provided by the National Science Foundation in a research report (16). We present the series in Table S9. We were unable to exclude social science from this series. However, given that relatively few Chinese study social science in US universities, the upward bias due to the inclusion of social science degrees should be small.

8. Government Policies for Scientific/Technological Development in China

The Guiding Principle of Scientific/Technological Development (1982). "Economic development should rely on science and technology; science and technology should be oriented to serving economic development" has become the guiding principle for the development of science and technology in China since the early 1980s (17). This principle was first declared and explicated by former Premier Zhao Ziyang in his speech entitled, "A Strategic Question on Invigorating the Economy" at the National Science and Technology Award Conference on October 24, 1982. During the speech, Premier Zhao emphasized the close relationship between science/technology and economic development. He argued that backward science and technology was China's major barrier to reaching the economic goal of doubling agricultural and industrial production by 2000. Zhao called for management improvements to promote the development of science and technology.

The Funding of Project 985 (1998). Project 985 originated from the speech of former President Jiang Zemin at the 100th Anniversary of Peking University on May 4, 1998. In this speech, President Jiang proposed that "several world-class universities and a number of universities with worldwide reputations" be established in China. To achieve this goal, the Ministry of Education first selected Peking University and Tsinghua University as target universities and planned to invest ¥180 million (or US\$300 million) in each of them from 1999 to 2001 (18). The project later expanded to fund a total of 39 universities.

The Recruitment Program of Global Experts (2008). The Recruitment Program of Global Experts (also known as the Thousand Talent Program) was launched in 2008, with the goal of recruiting up to 2,000 overseas experts during the next 5–10 y. The awardees would receive ¥1 million (US\$160,449) tax-free relocation allowances from the central government (19). Moreover, the awardees and their families would be given the right of permanent residency in China if they hold foreign citizenships or household registration in any city where they work if they are Chinese citizens. The awardees also enjoy enhanced medical insurance, generous pensions, and other privileged social services (20). The salary and research funding depend on negotiations with one's employer. The package is usually generous (21).

9. Media Reports of Returning Scientists

The names of prominent returning scientists such as Yi Rao, Yigong Shi, and Xiaodong Wang have frequently appeared on international and domestic media (21–29). They are examples of overseas experts who have returned to China to develop their careers. Their opinions reflect both the opportunities and the difficulties that returning scientists encounter in China. Below, we summarize briefly several reports from domestic and overseas media about these three returning scientists.

The China Economic Herald on August 5, 2004 reported the founding of the National Institute of Biological Sciences (NIBS) in Beijing and interviewed its first director, Xiaodong Wang, a biochemist and a Howard Hughes Medical Institute investigator at the University of Texas Southwestern Medical Center in Dallas. According to the report, the NIBS was founded to support outstanding experts producing world-class scientific research. Wang's main task was to help the institute to recruit overseas talent. During the interview, Wang showed confidence in the future research staff of the NIBS by saying that "those who can get positions in the United States may not get hired at the NIBS, while those who work in the NIBS must be good enough to get positions in the US" (22). At the time of the interview, Wang worked only part time at the NIBS. Later, according to a report in *Science* magazine on July 31, 2009, Wang closed his laboratory in the United States and returned to China full time for his second term at the NIBS under the Recruitment Program of Global Experts. The report quoted Wang as saying that "there is no turning back" to show his determination (23). On November 24, 2010, the People's Daily reported that Wang was received by Li Yuanchao, then a member of the Politburo and minister of the Party's Organization Department, who used the occasion to express his general support for returning scientists (24).

Yigong Shi, a molecular biologist who left Princeton University to assume a position at Tsinghua University in Beijing in 2008, is another figure who has received repeated media attention. He is cited as an example of a Thousand Talent funds recipient in articles appearing in Science (23) and Nature (21). A New York Times article, published on January 7, 2010, "Fighting trend, China is luring scientists home," reported that Shi's decision to return to China shocked his American colleagues. Using Shi's case as an example, the article revealed China's generous packages to attract overseas top scientists home. The article also discussed problems in China's scientific system that may discourage top overseas Chinese scientists from going back. However, according to the article, some returning scientists such as Shi are optimistic about the future of Chinese science, as they see themselves as having opportunities to influence the government's new initiatives and to improve China's science-related institutions and practices (25).

Yi Rao, a neuroscientist, left Northwestern University for Peking University in Beijing in 2007. He was selected as "The Most Influential Figure Between 1999 to 2009" by China Newsweek (26), in large part because of his sharp criticisms of the current scientific research system in China. His criticisms regarding institutional barriers to China's scientific development have been cited by Nature (27) and the New York Times (25). In an article entitled "Time to turn attention to science & technology," published in China Daily on September 3, 2008, Rao and Shi argued that China's scientific and technological development has lagged behind relative to the country's great achievements in sports, the economy, and other fields. To advance science, they called for good policies and reforms that would ensure fair competition based on scientific merit, unaffected by the interests of different groups. They also predicted that more top-tier overseas scientists would return to China if a favorable environment were created (28). In an article published in Science magazine on September 3, 2010, Shi and Rao further criticized unhealthy research practices in China, particularly the control of funding decisions by a small group of government bureaucrats (29).

10. Funding Figures from the Organisation for Economic Cooperation and Development

The Organisation for Economic Co-operation and Development (OECD)'s Main Science and Technology Indicators database (30) provides data related to research and development (R&D) in the OECD and some selective nonmember countries, including China. In Table S10, we present the OECD data that compare China and the United States in gross expenditure on R&D (GERD) and GERD's share of the country's gross domestic product (GDP) between 1991 and 2010. The GERDs are purchase-power adjusted and converted to 2005 constant US dollars. Data were extracted online on February 2, 2013 (30).

Two patterns emerge from Table S10. First, the GERD in both countries has increased over time, but the increase in China's GERD outpaced that of the United States. Between 1991 and 2010, the China:US ratio rose steadily from 5% to 44%. Second, in terms of percent GERD of GDP, whereas the United States has remained at the level of around 2.65% over the past 20 y, China's share of GDP spent on R&D has more than doubled, rising from a mere 0.73% in 1991 to 1.76% in 2010.

11. China's Scientific Output and Impact

Our analysis of scientific output and impact draws on special tabulations from Thomson Reuters' InCites (http://researchanalytics. thomsonreuters.com/incites/) and Essential Science Indicators (ESI; http://thomsonreuters.com/essential-science-indicators/) databases. InCites counts documents indexed by the Web of Science and the times they are cited. ESI tracks the highly cited Thomson Scientific indexed journal articles over a rolling 10-y period. Based on total citations received by field and year, articles

meeting the threshold of the top 1% are regarded as highly cited. Thomson Reuters provided the data upon our request, separately by country/region [i.e., China, United States, European Union (EU-15), United Kingdom, Germany, Japan, India], year (InCites 1990–2011; ESI 2001–2011), and 22 disciplinary fields.

From the data, we constructed three series to track changes in scientific output and impact by country/region. For scientific output, we used the total number of Web of Science articles in S/E. We measure impact by the average number of citations and the number of highly cited articles. All analyses were restricted to fields in the natural sciences and engineering, excluding the medical and social sciences. Data are summarized in Table S11. Historical trends in total number of articles and number of highly cited articles were plotted out in Fig. S5 A and B on log scales. In the main text, we present country-specific raw counts (i.e., number of articles, number of highly cited articles) in Fig. 5 A and C. In Fig. S6, we provide an adjusted version of those two series with a ratio-of-ratio measure: The ratio in relative productivity adjusting for economy size (i.e., the raw counts divided by each country's real GDP in 2005 constant PPP-adjusted US dollars) between a country and the United States. The GDP data were retrieved from the PWT (1). Fig. S6 A and B show that China's research productivity increased substantially even after we control for its fast increase in GDP (Fig. S1). In addition, China, along with India, has still lagged behind the other countries in relative productivity, in terms of both total number of publications (Fig. S6A) and most-cited publications (Fig. S6B), the latter gap being more pronounced.

We also calculated statistics that compare China and the United States in research productivity in specific fields and subfields. We note that the observed increase in publications by Chinese scientists may have overestimated the growth of China's real research productivity because our analysis is restricted to English publications to the exclusion of Chinese scientists' work in their native language. In the 1990s, in an effort to join the international community, Chinese scientists were shifting from Chinese publications to publications in English. Many English language journals based in China became included in the index systems of international citation agencies in this period.

Besides indicators based on scientific publications, we also traced historical data pertaining to patent applications initiated from China, the United States, and other leading countries/regions. The data came from the World Intellectual Property Organization statistics database (31). Similar to the publication trends, Fig. S7 shows a dramatic increase in China's patent applications since the late 1990s, in both absolute and comparative terms.

12. Scientific Misconduct in China

Significant Cases of Scientific Misconduct Exposed on New Threads. New Threads (www.xys.org) is a Web site where a well-known Chinese blogger, Fang Shimin, exposes scientific misconduct. For each case, the Web site posts the evidence that Fang has either uncovered himself or forwarded from others, as well as debates and criticisms about allegations of scientific misconduct. We examined the Web site and provide a summary of significant cases posted there from 2000 to 2009 (see below table). Our focus is on "scientific misconduct," which is defined broadly as plagiarism; fabrication of data and scientific findings; and fraudulent authorship, publications, and curriculum vitae. The cases summarized below all involved Chinese scholars in natural science. For most of the cases, we confirmed the validity of allegations with independent media reports or announcements of disciplinary actions taken by relevant institutions. Allegations that have not been confirmed are not listed here.

The Count of Scientific Misconduct Using Google News. The data of Fig. 6 are the search results from Google News. On the

Year	Event
2009	The editors at <i>Acta Crystallographica</i> Section E retracted 70 published structures, which were submitted by two researchers at Jinggangshan University, because these structures were found to be falsified. An academician candidate at the Chinese Academy of Science and a vice president of Wuhan University
	of Technology, Zhou Zude, was found to have submitted a plagiarized paper with his PhD student to the second National Conference of Intelligent Manufacturing.
	Zhejiang University dismissed He Haibo, an associate professor in the College of Pharmaceutical Sciences, because nine of his papers were charged with problems of plagiarism, multiple submission, fabricating funding source, and listing coauthors without consent.
2007	Two retired researchers revealed that a newly elected member of the Chinese Academy of Science, Xie Huaan, published a paper and a book that were plagiarized. The authenticity of Xie's educational credential, a technical secondary school diploma, was also questioned.
	Huang Linglin, a female PhD degree recipient from the Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, was deprived of her PhD degree. Her supervisor reported that Huang fabricated data in her dissertation, which had been published in the <i>Journal of the American Chemical Society.</i>
	The Chinese Academy of Engineering circulated a notice of criticism regarding three papers by the academician Fan Weideng and his students and colleagues in which they plagiarized the work of Japanese researchers.
2006	Tongji University dismissed its recently recruited professor and dean at the School of Life Sciences and Technology, Yang Jie, because he fabricated key items in his resume when applying for the position. Liu Hui, assistant dean and professor at the Tsinghua University Medical School, was dismissed for fabricating key items in his resume when applying for the job.
2005	The vice president of Anhui Normal University, Liu Dengyi, resigned because he was accused of having fabricated the record of a publication in the <i>American Journal of Botany</i> and <i>Ecology</i> .
2003	Li Shifeng, a PhD student at the School of Computer Science and Engineering, Southeast University, was found to have published a paper, which was translated and plagiarized from <i>Proceedings of IEEE</i> <i>Conference on Computer Communications (IEEE INFOCOM</i>).
2001	Yang Jingan, professor at the School of Computer and Information, Hefei University of Technology, was reported to have published six plagiarized papers and fabricated overseas research experiences and publications. Yang also received a warning letter from the Institute of Electrical and Electronics Engineers (IEEE) Publication Services and Products Board.
2000	Four researchers at Beijing University of Aeronautics and Astronautics were reported to have published a paper in the Journal of Beijing University of Aeronautics and Astronautics that was plagiarized from the IEEE journal Transactions on Signal Processing. One of the alleged plagiarizers was the president of the university, Shen Shituan.

Google News Web site (https://news.google.com.hk), we used "advanced search" feature and set "China" as the searching location. We specified the date of the news from January 1 to December 31 of each year from 2000 to 2010. We searched pages containing each of three key words (in Chinese) that are

- 1. Heston A, Summers R, and Aten B (1912) Penn World Table Version 7.1 (Center for International Comparisons of Production, Income and Prices, University of Pennsylvania, Philadelphia).
- Maddison A, Wu H (2008) Measuring China's economic performance. World Econ 9(2):13-44.
 National Bureau of Statistics of China (1995) 1982 Population Census of China (Results)
- of Computer Tabulation) (Statistical Publishing House, Beijing). Chinese.
- 4. National Bureau of Statistics of China (1993) Tabulation on the 1990 Population Census of the People's Republic of China (China Statistics Press, Beijing). Chinese.
- 5. National Bureau of Statistics of China (2002) Tabulation on the 2000 Population Census of the People's Republic of China (China Statistics Press, Beijing). Chinese.
- 6. National Bureau of Statistics of China (2012) Tabulation on the 2010 Population Census of People's Republic of China (China Statistics Press, Beijing). Chinese.
- Ruggles S, et al. (2010) Integrated Public Use Microdata Series: Version 5.0 (University of Minnesota, Minneapolis).
- National Bureau of Statistics of China (2006) Communiqué on Major Data of 1% National Population Sample Survey in 2005. Available at www.stats.gov.cn/english/NewsEvents/ 200603/t20060322_25744.html. Accessed May 24, 2014.
- Ministry of Education of the People's Republic of China, 1997-2010 Educational Statistics. Available at www.moe.edu.cn/publicfiles/business/htmlfiles/moe/s6200/index. html. Accessed September 4, 2012. Chinese.
- National Science Board (2010) Science and Engineering Indicators: 2010 (National Science Foundation, Arlington, VA), NSB10-01.
- 11. Ministry of Education of the People's Republic of China (1998–2011) Educational Statistics Yearbook of China (People's Education Press, Beijing). Chinese.
- 12. National Science Foundation, WebCASPAR Integrated Science and Engineering Resource Data System. Available at http://webcaspar.nsf.gov. Accessed September 4, 2012.
- National Science Board (2004) Science and Engineering Indicators: 2004 (National Science Foundation, Arlington, VA), NSB 04-01.
- National Science Board (2008) Science and Engineering Indicators: 2008 (National Science Foundation, Arlington, VA), NSB 08-01, NSB 08-01A.

most commonly used to describe academic misconduct in China: scientific fabrication (*ke xue zao jia*), plagiarism (*lun wen chao xi*), and scholarly corruption (*xue shu fu bai*). In addition to Fig. 6 in the main text, we also include a Fig. S8 with the y axis on log scale.

- National Science Board (2012) Science and Engineering Indicators: 2012 (National Science Foundation, Arlington, VA), NSB 12-01.
- National Science Foundation, National Center for Science and Engineering Statistics (2012) Doctorate Recipients from U.S. Universities: 2011 (National Science Foundation, Arlington, VA), NSF 13-301.
- State Science and Technology Commission of the People's Republic of China (1998) Guide to China's Science and Technology Policy (Scientific and Technical Documentation Press, Beijing). Chinese.
- Editorial Office of China Education Workbook (2000) China Education Yearbook (People's Education Press, Beijing). Chinese.
- Organization Department of the Central Committee of the Communist Party of China (2008) Interim procedure of introducing overseas high-level talents (Organization Department of the Central Committee of the Communist Party of China, Beijing), Document No. 28. Chinese.
- 20. Recruitment Program of Global Experts, Q & A on the benefits for returned experts. Available at www.1000plan.org/qrjh/section/2?m=rcrd. Accessed February 22, 2013. Chinese.
- 21. Qiu J (2009) China targets top talent from overseas. Nature 457(7229):522.
- 22. Wang X (August 5, 2004) Building world-class BT research center. China Economic Herald, Section B02. Chinese.
- Xin H (2009) Help wanted: 2000 leading lights to inject a spirit of innovation. Science 325(5940):534–535.
- 24. Su N (November 24, 2010) Li Yuanchao's comments at a meeting with Thousand Talent scientist Xiaodong Wang. *People's Daily*, Section 004. Chinese.
- LaFraniere S (January 6, 2010) Fighting trend, China is luring scientists home. New York Times. Available at www.nytimes.com/2010/01/07/world/asia/07scholar.html? pagewanted=all. Accessed April 15, 2013.
- 26. Cai R (2009) Yi Rao: A critical constructor. China Newsweek 48:60-62. Chinese.
- 27. Zeng W (2008) China's challenge. Nature 452(7190):1028-1029.
- 28. Rao Y, Shi Y (September 3, 2008) Time to turn attention to science & technology. *China Daily*, p 8.

29. Shi Y, Rao Y (2010) China's research culture. Science 329(5996):1128.

- Organisation for Economic Co-operation and Development (2012) Main science and technology indicators. OECD Science, Technology and R&D Statistics (database). Available at http://stats.oecd.org/Index.aspx?DataSetCode=MSTI_PUB. Accessed May 24, 2014.
- World Intellectual Property Organization (2013) WIPO statistics database. Available at http://ipstatsdb.wipo.org/ipstatv2/ipstats/patentsSearch. Accessed December 30, 2013.

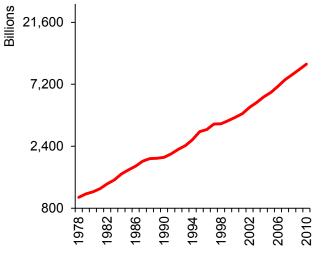


Fig. S1. China's GDP (2005 PPP-adjusted US dollars on a log scale), 1978–2010.

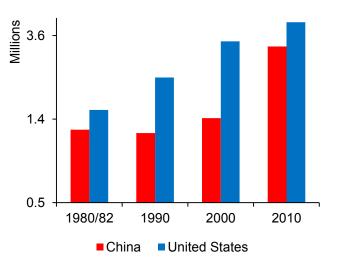


Fig. 52. Labor force (on a log scale) in S/E, 1980/1982–2010. In the 1980/82 category, 1980 represents the United States, and 1982 represents China.

Fig. S3. Age structure of scientists (y) in China (%).

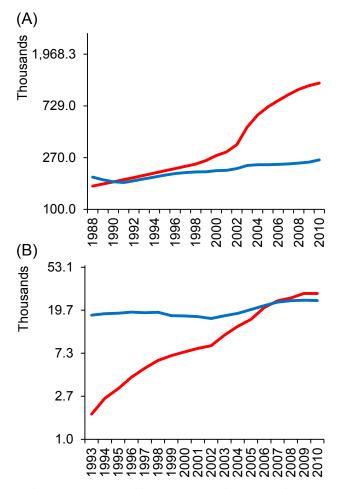


Fig. 54. (A) Bachelor's degrees (on a log scale) awarded, 1988–2010. (B) Doctoral degrees (on a log scale) awarded, 1993–2010. The red line is for China, and the blue line is for the United States.

<

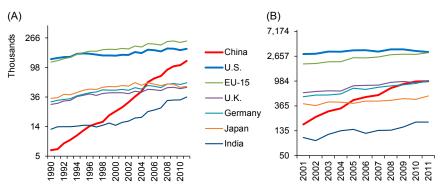


Fig. S5. (A) Total number of articles in S/E (on a log scale), 1990–2011. (B) Number of highly cited articles in S/E (on a log scale), 2001–2011.

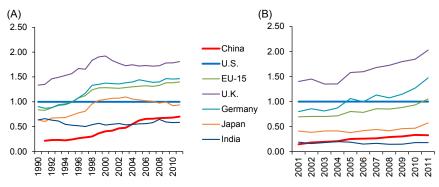


Fig. S6. (A) GDP-adjusted total number of articles in S/E compared with the United States, 1990–2011. (B) GDP-adjusted number of highly cited articles in S/E compared with the United States, 2001–2011.

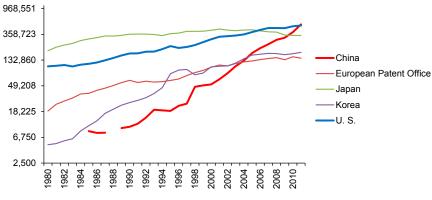


Fig. S7. Total patent applications (on a log scale), 1980–2011.

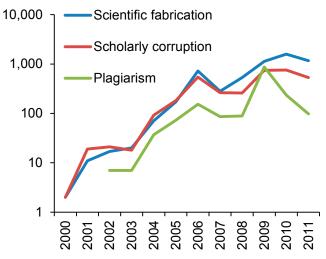


Fig. S8. Number of results in Google News search (on log scale).

Table S1.	Chinese population aged 25-29, 1982-2010
Table 511	chillese population agea 25 25, 1502 2010

	With postsecondary	Percent with postsecondary	
Year	education	Total population	education
1982	748,326	92,563,882	0.8
1990	3,199,995	96,982,769	3.3
2000	7,867,235	117,602,265	6.7
2010	20,783,912	101,013,852	20.6

DNAS

S/E occupations	Code, 199
Natural sciences	
Physical sciences	
Physicists and astronomers	69
Chemists, except biochemists	73
Atmospheric and space scientists	74
Geologists and geodesists	75
Physical scientists, n.e.c.	76
Chemistry instructors	115
Physics instructors	116
Biological sciences	
Agricultural and food scientists	77
Biological scientists	78
Forestry and conservation scientists	79
Medical scientists	83
Earth, environmental and marine science instructors	113
Biological science instructors	114
Mathematical sciences	
Actuaries	66
Statisticians	67
Mathematical scientists, n.e.c.	68
Mathematical science instructors	128
Engineering	
Aerospace engineers	44
Metallurgical and materials engineers	45
Petroleum engineers	47
Chemical engineers	48
Civil engineers	53
Electrical and electronic engineers	55
Industrial engineers	56
Mechanical engineers	57
Engineers, n.e.c.	59
Engineering instructors	127
Sales engineers	258
Computer-related occupations	
Computer systems analysts and scientists	64
Operations and systems researchers and analysts	65
Computer programmers	229

Table S2. US S/E occupation coding scheme, 1980–2010

Note: Occupational classifications vary across years. The results are based on harmonized data with standard 1990 occupational codes (7). n.e.c., not elsewhere classified.

Labor force	1980 (US)/1982 (China)	1990	2000	2010
	China			
S/E total	1,190,144	1,142,166	1,366,000	3,200,082
Natural sciences	101,698	98,139	79,923	155,980
Engineering	1,088,446	1,044,027	1,111,641	2,404,481
Computer-related occupations	_		174,436	639,622
Female in S/E, %	21.0	22.9	20.0	25.0
Natural sciences	28.3	27.9	30.3	36.1
Engineering	20.3	22.4	18.4	24.5
Computer-related occupations	—		25.9	24.1
Total labor force, % S/E	0.2	0.2	0.2	0.4
	United States			
S/E total	1,504,500	2,214,900	3,403,500	4,272,100
Natural sciences	308,400	370,500	551,800	687,800
Engineering	889,300	1,106,100	1,177,700	1,397,067
Computer-related occupations	306,800	738,300	1,674,000	2,187,233
Female in S/E, %	11.2	19.3	23.2	24.3
Natural sciences	19.8	26.8	33.7	39.8
Engineering	3.4	9.0	10.6	12.8
Computer-related occupations	25.3	30.9	28.7	26.8
Total labor force, % S/E	1.5	1.9	2.6	3.1

Table S3. Labor force in S/E in China and the United States, 1980 (US)/1982 (China)–2010

Table S4. Regression estimates of logged earnings in China and the United States

Variables	b	SE	Р	Exp(b)
	China, 2005			
Occupation, scientists $= 0$				
Social scientists	-0.286	0.084	0.001	0.75
Engineers	0.227	0.054	0.000	1.25
Doctors	-0.134	0.058	0.020	0.87
Lawyers	-0.056	0.063	0.374	0.95
Age	-0.065	0.021	0.002	
Age square	0.001	0	0.003	
Working hours, $35-40 h = 0$				
41–50 h	0.027	0.039	0.491	
51+ h	-0.039	0.045	0.385	
Education, bachelor's degree = 0				
Advanced degree	0.52	0.034	0	
Intercept	8.85	0.422	0	
R ²	0.152			
N	2,715			
	United States, 2006–2	2008		
Occupation, scientists $= 0$				
Social scientists	0.074	0.014	0.000	1.08
Engineers	0.183	0.008	0.000	1.20
Doctors	0.705	0.010	0.000	2.02
Lawyers	0.419	0.009	0.000	1.52
Age	0.158	0.004	0.000	
Age square	-0.002	0.000	0.000	
Working hours, $35-40 h = 0$				
41–50 h	0.182	0.006	0.000	
51+ h	0.305	0.007	0.000	
Education, bachelor's degree $= 0$				
Advanced degree	0.147	0.007	0.000	
Intercept	7.366	0.092	0.000	
R ²	0.3014			
Ν	50,363			

Table S5.	Trends in number of HEIs	
Year		No. of HEIs
1998		1,022
1999		1,071
2000		1,041
2001		1,225
2002		1,396
2003		1,552
2004		1,731
2005		1,792
2006		1,867
2007		1,908
2008		2,263
2009		2,305
2010		2,358

Table S6. Degrees awarded in S/E in China and the United States, 1988 (Bachelor's degree)/ 1993 (Doctoral degree)–2010

		China	a			United Sta	ates	
Year	Engineering	Sciences	S/E	% S/E	Engineering	Sciences	S/E	% S/E
			Doc	toral degi	rees			
1993	1,069	723	1,792	84.8	5,823	11,783	17,606	41.7
1994	1,389	1,182	2,571	71.6	5,964	12,220	18,184	42.0
1995	1,659	1,560	3,219	73.8	6,112	12,288	18,400	41.3
1996	2,195	1,999	4,194	84.7	6,371	12,469	18,840	42.1
1997	2,964	2,185	5,149	70.4	6,202	12,373	18,575	40.7
1998	3,427	2,752	6,179	69.0	6,013	12,757	18,770	40.6
1999	4,039	2,871	6,910	67.0	5,427	11,951	17,378	39.2
2000	4,611	2,907	7,518	68.3	5,384	11,859	17,243	38.5
2001	5,009	3,148	8,157	63.4	5,561	11,440	17,001	37.8
2002	5,252	3,434	8,686	59.3	5,192	11,076	16,268	36.5
2003	6,573	4,461	11,034	58.7	5,287	12,010	17,297	37.3
2004	8,054	5,495	13,549	57.8	5,928	12,368	18,296	37.6
2005	9,427	6,551	15,978	57.7	6,551	13,430	19,981	38.0
2006	12,130	8,785	20,915	57.7	7,423	14,484	21,907	39.2
2007	14,479	9,954	24,433	58.9	8,083	15,665	23,748	39.5
2008	15,276	10,889	26,165	59.8	8,137	16,356	24,493	40.4
2009	17,386	11,576	28,962	59.5	7,944	16,860	24,804	41.0
2010	17,428	11,611	29,039	59.3	7,840	16,760	24,600	43.7
			Bach	elor's deg	rees	-	-	
1988	115,397	40,802	156,199	55.8	70,154	115,611	185,765	18.5
1989	120,769	41,906	162,675	56.0	66,947	109,137	176,084	17.1
1990	126,391	43,102	169,493	56.3	64,705	105,021	169,726	16.0
1991	132,275	44,395	176,671	56.5	62,187	105,383	167,570	15.1
1992	138,433	45,793	184,226	56.8	61,941	111,158	173,099	15.1
1993	144,878	47,300	192,178	57.1	62,705	116,745	179,450	15.2
1994	151,622	48,924	200,547	57.4	63,012	122,976	185,988	15.7
1995	158,681	50,672	209,353	57.8	63,371	129,465	192,836	16.4
1996	166,068	52,552	218,620	58.2	63,114	135,943	199,057	16.9
1997	173,799	54,571	228,370	58.6	62,352	140,346	202,698	17.1
1998	181,890	56,738	238,628	59.0	60,914	144,441	205,355	17.1
1999	195,354	59,804	255,158	57.9	59,275	146,354	205,629	16.8
2000	212,905	68,368	281,273	56.8	59,536	150,898	210,434	16.8
2001	219,563	82,522	302,085	53.2	59,258	152,326	211,584	16.8
2002	252,024	94,988	347,012	52.9	60,639	158,536	219,175	16.8
2002	351,537	133,167	484,704	52.5	63,773	168,557	232,330	17.1
2005	442,463	168,242	610,705	51.0	64,675	171,106	235,781	16.8
2004	517,225	198,495	715,720	48.8	66,133	169,486	235,619	16.4
2005	575,634	231,547	807,181	46.7	68,121	169,229	237,350	16.1
2000	633,744	271,360	905,104	45.3	68,229	171,411	239,640	15.9
2007	704,604	297,259	1,001,863	43.3 44.4	69,870	172,857	239,040	15.9
2008	763,635	297,259 311,341	1,001,865	44.4 43.8	70,447	172,857	242,727 247,217	15.7
2009	-			43.6 43.6				16.0
2010	813,218	317,495	1,130,713	43.0	74,109	184,332	258,441	10.0

Table S7. Chinese graduate student enrollment in US universities, 1987–1997

	Subfield							
Year	Agricultural sciences	Physical/ life sciences	Mathematics/ computer sciences	Engineering	Other sciences	S/E total		
1987	591	6,341	2,630	4,343	775	14,679		
1989	773	9,113	3,728	5,799	911	20,324		
1991	1,045	11,562	4,179	7,870	1,045	25,700		
1993	1,018	11,457	4,364	8,692	1,164	26,696		
1995	1,398	9,201	4,259	8,095	1,040	23,994		
1997	1,215	9,683	6,312	10,036	1,372	28,619		

Table S8. Chinese graduate student enrollment in US universities, 2006–2010

PNAS PNAS

	Subfield						
Year	Agricultural sciences	Physical sciences	Biological sciences	Computer sciences	Mathematics	Engineering	S/E total
2006	272	6,100	4,063	3,733	2,959	10,727	27,854
2007	289	6,209	4,131	3,783	3,240	11,141	28,793
2008	690	5,880	5,160	3,480	3,290	11,220	29,720
2009	830	6,070	5,290	3,970	3,840	13,110	33,110
2010	1,090	6,970	5,550	5,470	5,000	18,220	42,300

Table S9. Chinese temporary visa holders earning doctorates at US colleges and universities

Year	No. of US doctorates awarded by Chinese citizens in S/E
2000	2,074
2001	2,196
2002	2,170
2003	2,323
2004	2,769
2005	3,346
2006	4,121
2007	4,308
2008	4,141
2009	3,744
2010	3,449

		China	ι	Jnited States
Year	GERD	Percentage of GDP	GERD	Percentage of GDP
1991	9,978	0.73	215,660	2.72
1992	11,452	0.74	216,462	2.64
1993	12,455	0.70	212,210	2.51
1994	12,750	0.64	212,198	2.41
1995	12,766	0.57	225,613	2.50
1996	13,915	0.57	237,877	2.54
1997	17,254	0.64	251,359	2.57
1998	18,844	0.65	265,171	2.60
1999	23,512	0.76	282,775	2.64
2000	30,401	0.90	302,231	2.71
2001	34,673	0.95	306,683	2.72
2002	42,570	1.07	300,510	2.62
2003	49,618	1.13	307,769	2.61
2004	59,264	1.23	310,261	2.55
2005	71,055	1.32	325,936	2.59
2006	83,902	1.39	342,286	2.65
2007	96,304	1.40	357,836	2.72
2008	111,183	1.47	374,199	2.86
2009	140,603	1.70	369,856	2.91
2010	160,494	1.76	368,203	2.83

Table S10.GERDs, total and as share of GDP: 1991–2010 (PPP,2005 US dollars in millions)

Table S11. Publication trends by country, 1990–2011							
Year	China	United States	EU-15	United Kingdom	Germany	Japan	India
Total no. of articles							
1990	6,104	130,559	117,940	28,484	30,988	34,948	12,346
1991	6,306	135,382	123,618	29,534	32,595	35,525	13,397
1992	7,699	139,512	132,217	31,897	33,579	39,873	13,447
1993	8,631	140,742	138,209	32,611	34,361	39,328	13,468
1994	10,010	155,473	153,661	36,959	37,866	42,463	13,676
1995	11,827	157,713	162,127	38,632	39,975	45,747	14,090
1996	13,731	156,185	170,011	40,408	42,100	47,629	14,118
1997	14,897	151,776	169,486	38,501	43,225	47,082	13,308
1998	15,816	147,438	179,167	41,078	46,474	50,584	14,094
1999	19,700	147,646	181,860	42,001	45,827	51,823	15,178
2000	22,611	146,476	180,577	42,079	45,885	51,457	14,105
2001	25,730	150,817	186,819	42,041	47,058	53,655	15,522
2002	30,548	150,008	183,772	40,727	45,776	52,677	16,208
2003	36,931	165,368	202,510	44,232	49,824	59,021	17,993
2004	43,954	159,711	195,748	42,937	47,571	54,136	18,381
2005	60,216	178,956	218,653	47,266	53,761	58,630	22,348
2006	68,270	175,578	217,003	46,655	52,296	56,124	23,593
2007	73,745	168,867	209,115	45,319	50,024	53,456	25,229
2008	91,257	186,283	235,294	49,887	56,383	56,485	32,379
2009	102,605	184,765	239,301	50,656	57,319	55,937	32,942
2010	106,694	176,747	228,520	48,217	55,460	50,333	33,122
2011	122,672	184,253	240,056	50,495	58,774	52,229	36,456
Average times cited tier article							
1990	8.6	32.7	22.2	26.9	21.8	18.2	7.1
1991	8.7	32.5	22.2	25.1	20.9	18.3	7.1
1992	8.7	32.7	22.6	26.5	22.2	18.1	7.7
1993	8.5	32.7	23.0	26.9	23.4	18.3	7.7
1994	8.0	29.8	21.9	24.8	23.2	17.4	7.8
1995	8.1	30.3	21.9	25.6	22.4	17.3	8.1
1996	8.1	30.4	21.7	24.6	23.3	16.7	8.6
1997	9.2	31.1	22.7	27.4	22.9	18.0	9.2
1998	9.8	33.2	23.0	27.5	24.4	18.3	9.9
1999	9.9	32.0	22.8	26.9	24.1	18.1	9.6
2000	10.2	32.0	23.0	27.8	24.0	18.4	11.3
2001	11.0	30.4	21.7	26.4	23.3	17.8	10.7
2002	10.8	28.5	21.1	26.3	22.8	16.5	10.8
2003	11.1	26.0	19.1	23.5	20.3	15.0	10.7
2004	10.5	24.1	17.7	21.7	19.3	14.8	10.1
2005	9.4	20.6	15.8	19.6	17.7	12.6	9.0
2006	8.3	17.1	13.2	16.5	14.8	10.8	8.0
2007	7.5	14.6	11.7	14.6	13.3	9.4	6.6
2008	6.0	11.1	8.9	11.1	10.5	7.3	4.8
2009	4.1	7.5	6.0	7.6	7.0	4.9	3.4
2010	2.0	3.7	3.0	3.9	3.7	2.5	1.6
2011	0.4	0.7	0.6	0.8	0.8	0.5	0.3
2001	174	2 004	5	hly cited articles	520	200	100
2001	174	2,894	1,951	617	528	398	103
2002	235	2,931	1,988	650 667	563	369	91 117
2003	293 331	3,187	2,128	667 661	564 589	427	117
2004	331 460	3,174	2,137		589 740	424	135 143
2005	460	3,354	2,503	814 828	740 706	404	
2006	520 563	3,376	2,477	828		443	122
2007 2008	563 742	3,186 3,495	2,580 2,823	835 935	768 811	443 455	137 138
2008	872	3,493	2,825 2,886	966	849	455 487	150
2009	968	3,275	2,885	900	895	467 474	157
2010	980	3,137	3,064	963	1,006	474 544	191
2011	300	101	5,004	202	1,000	544	191

 Table S11.
 Publication trends by country, 1990–2011

Source: Special tabulations by Thomson Reuters. Our data were purchased from Thomson Reuters as customized tabulations based on InCites (http://researchanalytics.thomsonreuters.com/incites/) and ESI (http://thomsonreuters.com/essential-science-indicators/).