
Supporting Information

Pabbisetty et al. 10.1073/pnas.1323493111

Fig. 51. Flow cytometric analysis of antibodies used to distinguish thymus-derived regulatory T cell (tTreg) vs. induced/peripheral Treg (i/pTreg) populations. (A) Intracellular expression of Helios (*Upper*) vs. surface expression of Neuropilin (*Lower*) after gating on CD4⁺CD25⁺FoxP3⁺ splenic T cells. Representative overlay histograms are included (ex vivo generated iTregs = open histogram, splenic Tregs = gray histogram). All cells were derived from C57BL/6 mice. n = 2 experiments. (B) Intracellular staining for Helios expression (*Upper*) vs. surface expression of Neuropilin (*Lower*) on CD4⁺CD25⁺FoxP3⁺ T cells under steady-state conditions. T cells were harvested from the thymus, spleen, mesenteric lymph nodes (Ms LN), and axillary lymph nodes (Ax LN) of C57BL/6 mice. The frequency of Tregs that expressed low levels of the respective markers is shown. n = 4 experiments. (C) Graph displaying the percentage of Tregs (CD4⁺CD25⁺FoxP3⁺) that expressed low levels of Helios (black bars) vs. Neuropilin (gray bars). Data from four mice were averaged; error bars (SD) and *P* values comparing thymic and secondary lymphoid organs are included. n = 4 experiments. (*D*) Expression of activation markers on Helios^{high} Tregs isolated from various tissues under homeostatic conditions. Select surface receptors that are typically up-regulated after T-cell activation were examined on CD4⁺CD25⁺FoxP3⁺Helios^{high} T cells freshly harvested from *Lck-cre; Klf2^{fl/fl}* (black line) and littermate control (solid gray) mice and displayed as a histogram overlay. n = 3 mice per cohort.

Fig. S2. Frequency of CD4⁺ T cells expressing T_H^2 -associated cytokines and GATA3 transcription factor. Lymphocytes harvested from the mesenteric lymph nodes of wild-type (open circles) vs. *Lck-cre; Klf2^{fl/fl}* (black squares) mice were stimulated with phorbol 12-myristate 13-acetate (PMA) plus ionomycin for 6 h, then examined for intracellular expression of outlined factors. Averaged values (dashes) and *P* values are displayed. n = 3 mice per cohort.

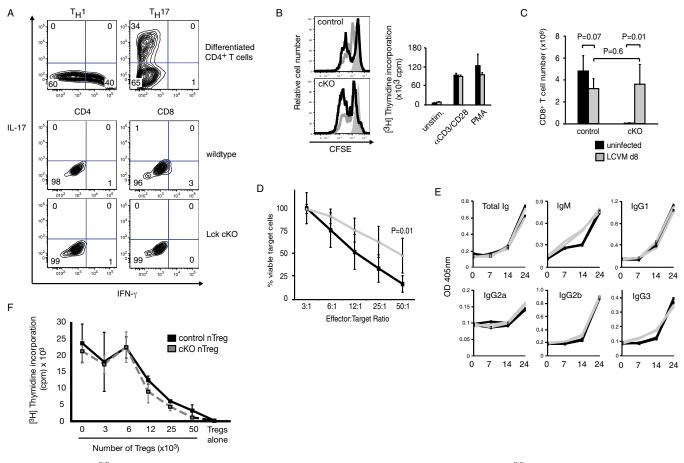
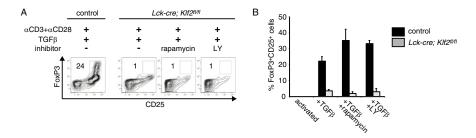
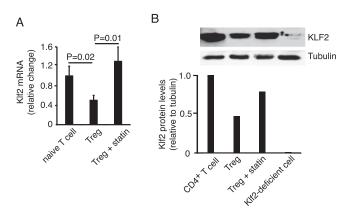




Fig. S3. Lck-cre; Klf2^{fl/fl} mice have a functional T-cell effector compartment. (A) T cells from wild-type vs. Lck-cre; Klf2^{fl/fl} (Lck cKO) mice were stimulated with PMA plus ionomycin to determine whether these cells had differentiated into pathogenic T_H1 (IFN- v^+) or T_H17 (IL-17⁺) effector cells in vivo. Ex vivo differentiated CD4⁺ T cells (Upper) were included for staining purposes. n = 3 experiments. (B) Klf2-deficient T-cell proliferation as a function of carboxyfluorescein succinimidyl ester (CFSE) dilution (Left) and thymidine incorporation (Right). Splenic T cells from Klf2^{fl/fl} (control) and Lck-cre; Klf2^{fl/fl} (cKO) littermates were stimulated, and proliferation was analyzed by flow cytometry. Histogram overlay: solid gray, untreated; gray line, anti-CD3c (0.5 µg/mL); black line, anti-CD3c (5 µq/mL). n = 3 experiments. Alternatively, CD4⁺ T cells from Klf2^{fl/fl} (black bars) and Lck-cre; Klf2^{fl/fl} (gray bars) littermates were stimulated as indicated, and $[^{3}H]$ -thymidine incorporation was used to measure proliferation. Error bars indicate SD. P > 0.1 for all events. n = 2 experiments. (C) Quantification of splenic CD8⁺ T cells in KIf2^{flifl} (control) vs. Lck-cre; KIf2^{flifl} (cKO) mice. T-cell numbers were averaged from cohorts of uninfected mice (black bars) or day-8 lymphocytic choriomeningitis virus (LCMV)-infected mice (gray bars). n = 7 mice per group, error bars are SD. (D) Cytolytic efficiency of CD8⁺ T cells harvested from K/f2^{fl} (solid black line) vs. Lck-cre; Klf2^{fl/fl} (dashed gray line) littermates. CD8⁺ T cells from LCMV-primed mice were cocultured with RMA-S target cells that were precoated with an LCMV agonist peptide. Target cell lysis (release of intracellular and membrane-associated dyes) was measured by flow cytometry. Percent viable target cells = (% experimental CFSE⁺PHK26⁺ RMA-S cells/% CFSE⁺PHK26⁺ RMA-S cells cocultured with naïve CD8⁺ T cells) × 100. Error bars show SD; P values >0.05 except as indicated. n = 7 mice per infected group. This experiment was performed once. (E) T-dependent Ig class-switching. Trinitrophenyl (TNP)specific Iq concentrations in the sera of a KIf2^{fl/fl} mouse (black lines) vs. an Lck-cre; KIf2^{fl/fl} littermate (gray lines) after challenge with TNP-OVA. Mice were rechallenged with TNP-OVA at day 14. n = 2 experiments. (F) Suppression of Klf2⁺ T-cell proliferation using CD4⁺CD25⁺ Tregs from Klf2^{fl/fl} (solid black line) vs. Lck-cre; KIf2^{fl/fl} (dashed gray line) mice. Averaged [³H]-thymidine incorporation ± SD is shown. No significant variation (P > 0.05) between groups was detected. n = 2 experiments.

Fig. 54. Ex vivo generation of iTregs using CD4⁺CD25⁻ T cells harvested from KLF2-sufficient (control) or KLF2-deficient (*Lck-cre; Klf2^{fl/fl}*) mice. (A) Representative contour plots of live-gated, CD4⁺CD25⁻ T cells cultured under the specified conditions for 72 h. Frequency of FoxP3⁺CD25⁺ T cells is indicated. LY, LY294002. (B) Percent iTregs generated after 72 h. culture with activating media (α CD3+ α CD28) alone or with additional reagents. These results are averaged from two independent experiments (*n* = 1 per condition); variance is indicated.

Fig. S5. Simvastatin elevates transcriptional and posttranslational levels of KLF2. (*A*) Relative *Klf2* mRNA expression in naive CD4⁺CD25⁻ T cells, CD4⁺CD25⁺ FoxP3⁺ Tregs, or CD4⁺CD25⁺ FoxP3⁺ Tregs cultured with simvastatin for 24 h. Error bars (SD) and *P* values are shown. n = 2 experiments. (*B*) Immunoblot of KLF2/tubulin and corresponding densitometry plot using total cell lysate from CD4⁺CD25⁻ T cells, CD4⁺CD25⁺ FoxP3⁺ Tregs with or without simvastatin (24 h) or B cells from a *CD19cre; Klf2^{f1/f1}* mouse (negative control for KLF2). n = 3 experiments.

Fig. S6. Ectopic expression of KLF2 does not impair Treg function or survival. (*A*) Enhanced expression of KLF2 during the inductive stage of iTreg production does not negatively affect suppressor functions. Ex vivo suppressor assays were conducted using iTregs generated in the presence of α CD3+ α CD28+TGF β with or without simvastatin, rapamycin, or LY294002. Each condition was done in duplicate (mean and variance are shown) using three different ratios of effector T cells: iTregs. This experiment was performed twice. (*B*) Elevated KLF2 expression during iTreg production does not impact ex vivo cell survival. iTregs generated with or without simvastatin were cultured in standard media containing IL-2, and cell survival (cell membrane-intact, 7AAD-) was assessed 72 h later by flow cytometry. Initial input CD4⁺CD25⁻ T cells were harvested from WT (left columns) or SMURF1^{-/-} (right columns) animals. This experiment was performed once in quadruplicate. Error bars (SD) and *P* values (Student *t* test) are shown. (*C*) Increased KLF2 expression does not impair SMURF1-deficient Treg suppressor activity. Ex vivo suppressor assays were conducted using splenic Tregs harvested from SMURF1⁺ vs. SMURF1^{-/-} animals. Error bars (SD) and *P* values (Student *t* test) are shown. *n* = 2 experiments performed in triplicate.