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SI Text
Glass Transition Temperatures and Nonequilibrium Lengths. This sec-
tion summarizes formulas we use in this paper to predict glass
transition temperatures. The formulas are derived in refs. 1, 2.
Heterogeneous dynamics below the onset is characterized by the

concentration c of localized soft spots or excitations. At equilib-
rium, cσ3 = expð−~βÞ, where ~β= ½1=T − 1=ToðpÞ�  JσðpÞ> 0 and
JσðpÞ is the free energy or reversible work to move a molecule
a molecular diameter σ. The pressure dependence of JσðpÞ and
ToðpÞ is important when considering the behavior of water.
Whereas dynamics above the onset temperature is unstructured,

like random motion in a mean field, dynamics below the onset
temperature is controlled by excitations facilitating the birth and
death of neighboring excitations. At equilibrium, the mean-free
path between excitations is

ℓðTÞ= σ exp
�
~β
�
df
�
; [S1]

where df is the fractal dimensionality of the path. For three-
dimensional structural glass, df ≈ 2:4(3).
Collective reorganization is required to move a molecule to a new

enduring position, so that its reorganization energy depends upon
the length of that displacement. Specifically, Jσ′ = Jσ ½1+ γ lnðσ′=σÞ�.
This logarithmic growth of energy with length is universal, but the
constants Jσ and γ are system dependent (3, 4). As a result of the
logarithmic growth, the structural relaxation time τ is

τðTÞ= τMF exp
n
~β  γ ln½  ℓðTÞ=σ�

o
; T <ToðpÞ; [S2]

where τMF is τ for T ≥ToðpÞ. In general, τMF is a weak function of
T and p, but we neglect that dependence in comparison with the
much larger temperature variation of the right-hand side of Eq.
S2. At equilibrium, Eqs. S1 and S2 combine to give the familiar
super-Arrhenius parabolic law.

Super-Arrhenius relaxation is associated with underlying hi-
erarchical dynamics, where relaxation depends upon the size of
relaxing domains. This dependence is responsible for a glass
transition when the material is cooled at a rate ν. Specifically,
the system transitions from ergodic to nonergodic behavior at
a temperature Tg, where

1=ν= jdτ=dTjTg
; [S3]

below which ℓðTÞ is locked at its nonequilibrium value ℓne = ℓðTgÞ.
Therefore

1=
2  ν  τMF   ~βgγ   Jσ

df   T2
g

exp
�
~β
2
gγ

�
df

�
; [S4]

where

~βg = JσðpÞ
�
1
�
TgðpÞ− 1=ToðpÞ

	
= df lnðℓne=σÞ; [S5]

or

1
TgðpÞ=

1
ToðpÞ+

df
JσðpÞ lnðℓne=σÞ: [S6]

Eq. S6 gives the dashed lines in Fig. 1A.
An approximate solution to the transcendental Eq. S4 is

useful when To and Tg are of the same order and ~β
2
gγ=df �

lnð~βgγ=dfÞ. In that case

lnðℓne=σÞ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ln

�
2  ν  τMF   γ   JσðpÞ

�
T2
oðpÞ

	�
df   γ

q
: [S7]

This solution can serve as the first guess to the numerical solution,
the first guess differing from the numerical solution for water by
a few percent.
Because ℓðTÞ= ℓne for all T <Tg, the relaxation time τ, Eq. S2,

is Arrhenius for that regime. If the glass with its fixed ℓne is
cooled to a very low temperature, and then warmed on a time
scale of tw, it will undergo a transition at an apparent glass
transition temperature Tag, where tw = τMF expf~βag   γ lnðℓne=σÞg.
Accordingly,

1
TagðpÞ=

1
ToðpÞ+

lnðtw=τMFÞ
γ   JσðpÞlnðℓne=σÞ : [S8]

Eq. S8 yields the dotted lines in Fig. 1A, with TagðpÞ evaluated
for a warming-time scale of minutes, i.e., tw ≈ 102   s≈ 1014   τMF.
Application of these formulas requires ToðpÞ, JσðpÞ, and τMF.

The low-pressure forms have been determined previously (5).
High-pressure behaviors have been determined similarly. Fig. 1A
shows the behavior of ToðpÞ, and its form is well approximated
by a spline,

ToðpÞ=To =−0:015 logðp=poÞ+ 0:976; 0< p=po < 5× 102

   = 0:199  log2ðp=poÞ− 1:344 logðp=poÞ;
   + 3:118;   5× 102 < p=po < 2× 103

  = 0:173 log2ðp=poÞ− 1:078 logðp=poÞ
�

   + 2:521;   2× 103 < p=po < 8× 104: [S9]

Fig. S1. Reduced energy scale JσðpÞ=ToðpÞ as a function of pressure. Circles
are results computed with the mW model following methods detailed in refs.
1 and 2. Corresponding states analysis (3) indicates that these results should
hold for all reasonable models of water as well as for the actual substance. The
solid line is the spline fit to the data.
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Fig. S1 shows the behavior of JσðpÞ=ToðpÞ, and its form is well
approximated by a spline,

JσðpÞ=ToðpÞ= 22:5; 0< p=po < 2× 102

=−3:9ðlogðp=poÞ− 2:7Þ3 + 1:8 logðp=poÞ ;
+ 18:1;  2× 102 < p=po < 1:2× 104

 = 6:0ðlogðp=poÞ− 5:1Þ4 + 0:5 logðp=poÞ
+ 6:8;  1:2× 104 < p=po < 8× 104:

[S10]

Table S1 illustrates predictions of these formulas applied to
water at ambient conditions, computing Tag with the warming-
time scale of minutes, i.e., tw = 102   s.

Dynamics of Transformations of Amorphous Ices. In this section we
provide a few more examples of dynamics that follow from our
simulated high-density amorphous (HDA) and low-density amor-
phous (LDA) phases.
The first example focuses on the reversibility of pressurizing

and depressurizing the amorphous ices to transition between HDA
and LDA. The nature of these processes is illustrated in Fig. S2.
Specifically, configurations taken from the HDA basin prepared
with large s are first quenched to lower temperature and to s= 0.
Then the configuration and volume are evolved with Nosé–Hoover
(6) equations of motion with a constant rate of change of the
pressure and its reverse. Over 1,000 trajectories generated in this
way are used to compute the time-dependent density depicted

in Fig. S2. The ability to reverse the HDA to LDA transition
demonstrates that the materials produced by the s ensemble
are robust solids.
The second example considers the time dependence of the

potential energy per particle eðtÞ and the number of EDs per
particle cðtÞ of very cold HDA brought to a low pressure where
it is then warmed. From our discussion of phenomenology in the
main text and from experimental work (7), we expect this pro-
tocol to produce two calorimetric peaks––one apparent glass
transition where HDA transforms to LDA, and another appar-
ent glass transition where LDA melts into a nonequilibrium liquid
from which crystal ice coarsens.
We observe this behavior, as illustrated in Fig. S3, and the

temperatures at which the transitions occur can be understood in
terms of the equations presented in the previous section. The figure
shows the results obtained from averaging 1,000 independent
trajectories initiated from the HDA configurations, with a warm-
ing-time scale tw ≈ 103τMF. Eq. S8 then predicts a transition at
Tag ≈ 0:44  To, in good agreement where the low-temperature
transition is detected in the trajectories. Above that temperature,
the radial distribution functions found from our simulation in-
dicate that the resulting amorphous solid is the LDA material. In
that case, the activation energy (or equivalently, the value of Jσ)
has changed from that locked in from the higher-pressure HDA
material to that of the LDA material. Eq. S8 then gives Tag ≈ 0:80
for the temperature that LDA will melt, again in good agreement
with the results of our trajectories.
Having gained confidence in our theoretical analysis through

comparison with simulation, we now turn to the experimental
observations of two-step relaxation (7). These recent experiments
have found that a stabilized version of HDA brought to low
temperatures and pressures exhibits a calorimetric peak at
T ≈ 130 K. By taking this value for Tag and applying Eq. S8 with
tw = 100 s, we conclude that ℓne ≈ 5 nm for this version of HDA.
The corresponding Tag for LDA can then be predicted using this

Table S1. Nonequilibrium length, time, and energy scales for
LDA ice at ambient pressure

ℓne=nm ν=K  s−1 τg=s Tg=To Tag=To

1.5 108 10−9 0.80 0.48
5.0 104 10−4 0.73 0.55
10.0 0.1 102 0.65 0.65

Fig. S2. Forward and backward transitions between HDA and LDA. Con-
figurations taken from HDA prepared at s> s*, T=To = 0:8, and p=po =20× 103,
state A, are instantly quenched at constant pressure to a temperature
T=To = 0:6, state B, where it is annealed with s=0 for 2000Δt. Then the pressure
is changed at constant temperature at a rate of −5 kbar/ns to p=po = 1, state C.
The pressure is then changed at constant temperature with a rate of 5 kbar/ns,
back to state B. (Inset) Illustration of the paths. The time dependence of the
averaged reduced density or volume is illustrated in the main graph.

Fig. S3. Time dependence of the potential energy and number of enduring
displacements of HDA heated at low pressure. Configurations taken from
HDA prepared at s> s*, T=To = 0:8, and p=po = 20× 103, state A, are instantly
quenched to s= 0, T=To = 0:32, and p=po = 1, state B. The temperature is then
changed at constant pressure at a rate of 10 K/ns to T=To = 0:8, state C.
Configurations are then annealed at this temperature for t=Δt = 7:5× 103.
(Inset) Illustration of this path The time dependence of the averaged po-
tential energy per particle, eðtÞ in units of To, and the excitation concen-
tration cðtÞ are shown in the main graph. The black arrows indicate the
temperature reached at two particular points in time.
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value for ℓne together with the low-pressure LDA value for Jσ .
This evaluation predicts Tag ≈ 150 K for the LDA material that is
produced by melting the stabilized HDA. This predicted position
for a second calorimetric peak is in harmony with experiment (7).
Notice that, had experimentalists not stabilized the HDA

through annealing, the data shown in Fig. 1A suggest that the
HDA material would have ℓne ≈ 1:5  nm. In that case, Tag com-
puted from Eq. S8 for that HDA material would be ≈ 85 K.
Such a low value for the temperature at which the low pressure
form of HDA would become unstable indicates why two-step
melting was not detected without first annealing to create a more
stable HDA.

Based upon indirect evidence, experimentalists have interpreted
two-stepmelting of amorphous ices as indicative of two distinct liquid
phases (7, 8). We find nothing in our simulations to support the
idea. The time dependence of the excitation concentration cðtÞ
shows that the material remains solid-like until reaching the
apparent glass transition temperature of LDA, which with the
warming rate of our simulations occurs near 0:8  To. In other
words, some reorganization does occur to allow the transition
from HDA to LDA, but the low mobility of a glass remains until
ergodic states are accessed at the apparent glass transition tem-
perature for LDA.
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