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1 Methods

1.1 Modelling Regular Outbreak Dynamics

The epidemics dynamics were modelled based on a deterministic age-of-
infection SIR model [1], which we extended to an SIRS model by adding a
simple feedback from the recovered population to the susceptible population
via loss-of-immunity caused by steady antigenic drift. In this model the
number of newly infected at time t is:

i(t) =
S(t)

N
R0(1 + δ(t))

d∑
τ=1

Pτ i(t− τ) (1)

where S is the number of susceptible, R0 is the basic reproduction rate of a
fully susceptible population and P is the seven-day infectivity profile (d = 7)
chosen as a Gamma distribution with a mean of 2.7 days and variance 1.8
days and N is the reporting population at a reporting rate of 10%. The
dynamics of the susceptible pool is then:

S(t) = S(t− 1)− I(t) + λR(t− 1) (2)

Recall 1/Λ is the average period of immunity of a typical individual
immunity usually 2 to 10 years so that Λ typically ranges .1 to .5, and for
a model with daily time step, we set λ = Λ/365. The infected individuals
recover after d days, thus the recovered population growth is:

R(t) = R(t− 1) + I(t− d)− λR(t− 1) (3)

Finally there is also a constant influx of influenza arriving in Tel Aviv
from any destination in the world, which was set at one person per day all
year round. The influenza influx cannot be modelled higher than 10 per day
as this gives a model baseline ILI above one influenza case per day in the low
season (10×10% = 1, taking into account a 10% reporting rate). Conversely,
an influx rate much below 0.1 sick persons per day will eventually render the
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model unable to fit to the ’small’ outbreaks since the infected and susceptible
population may often be unable to reach the epidemic threshold Reff = 1 in
those years.

The simple climate driver is modeled as R0 = R0[1 + δ sin(ωt)]. The real
climate driver is expressed as a linear combination thus: δ(t) = wTT(t) +
wRHRH(t) where T is daily average temperatures and RH is relative humid-
ity, both normalized to the interval [−0.5, 0.5].

1.2 Fitting Epochal Years

The outbreaks during the epochal jump years (2003, 2009) are different from
the other years in both timing and dynamics. As emphasised in the paper,
a key feature of the A-Fujian 2003 year when the epochal jump occurs, is
that the epidemic initiates two months earlier than usual (i.e., as compared
to other years). The 2009 H1N1 year also initiates early (in fact out of
season) and its main peak is also two months earlier than usual. The full
2009 epidemic trajectory is obscured by multiple peaks in the data. Both
the 2003 and 2009 outbreaks are very spiky and they do not conform to
normal SIR modelling. This motivated fitting two extra parameters to be
used only in years in which there are antigenic jumps.

The simplest assumption for a year with an epochal jump is the inclusion
of fast. high loss of immunity from the beginning of the season when the
new virus strain appears. Thus to keep things simple, if an epochal year
is identified, immunity loss is immediate from the start of the season and
continues for the whole year.

The other feature of the A-Fujian year when the epochal jump occurs is
that the epidemic initiates two months earlier than usual. The only clear
way known to the authors for initiating an early epidemic is to slightly
increase Reff (see Stone et al. (2007)). We thus fit an extra parameter to
the model which allows for the possible extra increase in Reff by adding a
pulse over the first 6 months of the season when the epidemic grows.

The antigenic jump is modelled first as a modification to δ′(t) = δ(t)+∆,
∆ = 0.26(0.02), for the period leading up to 1st December and a modification
in immunity-loss rate λ′ = λ+ λ∗, λ∗ = 0.04(0.01), for the whole year.

2 The Bayesian inference: Parameter estimation
and prediction accuracy

In the main text we reported a high correlation r=0.94 between the model
ILI fit and the observed ILI data. In Fig. 1 we plot a 2D histogram demon-
strating the success of the fit.

We assume that the six prior marginal parameters θi: basic reproduc-
tion rate R0, relative humidity weight ωRH, temperature weight ωT, loss-
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Figure 1: 2D histogram of daily ILI observed versus the model output ILI.
The color bar is logarithmic.
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of-immunity rate λ, seasonality driver enhancement ∆, loss-of-immunity
enhancement λ∗ are vaguely distributed according to broad Gamma dis-
tributions. The boundary condition on susceptible population is assumed
uniformly distributed S0 = S(0) ∼ U [0, 1]. The density functions of these
marginal priors are Pm(θi).

We construct a prior likehood function from the residuals of the ILI
counts Î(t) and the model outcome I(t) = M(t, R0, ωRH, ωT, λ, η, λ

∗). The
residuals, ∆θ(t) = Î(t)−I(t), are assumed to be Gaussian distributed ∆(t) ∼
N(0, σ2) with probability density PN (∆θ(t)). The prior likelihood is then
log(Pr) =

∑
t log(PN (∆θ(t)).

According to Bayes’ theorem p(θ|∆) ∼ p(∆|θ)p(θ) and thus the posterior
log-likelihood function log(Ps) obeys:

log(Ps) ∼
∑
t

log(PN (∆θ(t))) +
8∑
i

log(Pm(θi)) (4)

The Monte Carlo Markov Chain sampling is then performed using the
slice sampling method [2] on log(Ps). The sampling is continued until con-
vergence on parameter values are attained and the output trace for each
parameter displays minimal autocorrelation.

With regard to the priors, we followed the common procedure of using
Gamma distributions for parameters that are positive. The shape/scale has
basically no effect since the sampler is not restricted by the density of the
pdf in the regions that provide the best fit. The hyper-parameters do not
influence the procedure. We have used other distributions with little effect.
The deeper understanding is that the parameter settles according to the
data, rather than the mean and variance of the prior.

In Table 1 we have specified the priors and values of hyperparameters
that were used for the Bayesian inference.

The software used was Matlab R2011b for 64-bit Windows 7 with the
statistics toolbox using the slice sampling algorithm ”slicesample” [2]. The
procedure followed is standard bayesian MCMC analysis and validation
methods which is documented in the manual to the ”slicesample” function
in Matlab.

In Fig. 2 we show the density kernels of the MCMC sampling procedure
for the six parameters. Best fitting parameters (mean and 95% credible
intervals): R0 = 2.9(±0.1), S0 = 0.31(±0.02) , wT = 0.13(±0.02) , wH =
0.028(±0.003) , Λ = 0.17(±0.01) , ∆ = 0.26(±0.02) , λ∗ = 0.04(±0.01),
s = 0.44(±0.08)

In figure 3 we also show how the predictive accuracy of the model depends
on the division into calibration and validation sets. The graph shows the
model’s predictions for k-years ahead when the first N − k years are fitted
with the model. The x-axis is always the number of years k predicted. First
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Variable Prior distribution

i(t)−m(t) Gauss(0,τ)
R0 Gamma(3,1)
wT Gamma(2,2)
wRH Gamma(2,2)

Loss-of-immunity (Λ) Gamma(1,1)
New Strain pulse (∆) Gamma(3,1)

New Loss-of-immunity (λ∗) Gamma(1,1)
S0 Uniform(0,1)

τ = 1
s2
,where s Uniform(0,100)

Table 1: Table of prior distributions and specified values of hyper parame-
ters.

Figure 2: The density kernel plots from the trace of the MCMC procedure
for sampling the posterior likelihood function. Each subpanel illustrates the
estimated marginal distributions for each parameter. The confidence inter-
vals of ± two standard deviations are readily found from this information.
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Figure 3: Model quality of fitting to N − k years and prediction k years,
for N = 12. Thus k = 3 is the reported result in Fig. 1 in the main text.
k = 4 is the then prediction quality of 2009-13, k = 5 is 2008-13 etc. The
dramatic drop-off seen for k = 10 is due to the fact that the antigenic jump
is not fitted when N − k=2 thus the model will fail.

we predict three years as in the paper, by fitting 12-3=9 years. Then the
four years from 2009 - 2013. etc.

The brown curve shows how the original prediction of 2010-2013 behaves
during that whole exercise. That is, if we fit from 2001 to 200x (x < 10)
then what happens to the quality of the 2010-2013 fit? It shows the same
effect as in the sinusoidal v. climate driven model: adding the pulse makes
the whole difference for post-antigenic jump dynamics. Note that we include
2009 in the correlation calculation for the gray curve, as opposed to Fig. 1
in the main text where we exclude this year.

3 The Data

The ILI counts and laboratory confirmed cases are in good correspondence
according to Israel Center for Disease Control (ICDC)1. Figure 4 shows the
raw data and the smoothed time series. The top panel gives the ILI daily

1Preceding report - influenza like illness surveillance [Internet], 2007. We will back this
up with an analysis of virological surveillance data and ILI incidence counts in section 8.
Available from: http://www.old.health.gov.il/Download/pages/flu makdim2007.pdf
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Figure 4: Examples of raw data and processed data. (a) Raw daily counts
of influenza-like-illness (blue) and the smoothed data (red). The smooth-
ing was performed with an initial linear interpolation of Saturday counts
and the lower Friday counts (where opening hours are shorter too). Then
a wavelet approximation is subsequently calculated. (b) Average daily rel-
ative humidity measured in and around Tel Aviv smoothed with a wavelet
approximation. (c) Average daily temperature gauged in and around Tel
Aviv smoothed with a wavelet approximation.
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rates. The zero count ’dips’ are Saturdays (Shabat) where family doctors
are not taking calls. The ’spikes’ are Sundays, a normal work day in Israel,
whence the individuals that are still sick choose to report to their family doc-
tor. The Saturday and Friday counts are linearly interpolated, while Sunday
counts are maintained. This choice of interpolation scheme was found to
be appropriate for the subsequent smoothing procedure since the weekend
attack rates are preserved. A fast discrete Daubechies level 6 wavelet ap-
proximation was applied to the interpolated data. The procedure removes
daily noise while maintaining fluctuations at weekly timescales (visible as
wiggles in the smoothed time series in Figure 4). The climate observations
were averaged for the Tel Aviv region and smoothed using a Daubechies
level 6 wavelet approximation.

As we describe in Huppert et al. (2013), ”[I]n our data, it was found
that on average 1.5% of all Maccabi members were infected with influenza
annually. However, in the US, average overall attack rates are estimated to
be between 10% to 20% [3], [4], and France some 12% to 15% [5]. This,
together with discussions with the Israeli Ministry of Health, motivated
our setting of the reporting rate to 10% (r = 0.1), yielding an attack rate
in Israel (ranging between 10-20%) consistent with that reported in the
literature for other countries [6], [7].” Note that our premise in this work
is that the coverage rate of the Health provider and the reporting rate are
independent.

Regarding the population size, Israel’s Central Bureau of Statistics 2

gives the population of Tel Aviv in 2008-2011 as being close to 400,000
which is what was used in the modelling.

4 The Fully Stochastic Model

Figure 5: The ILI data (grey), the stochastic envelope as 95% prediction
interval (green) and the mean (red is the fit, blue is the prediction). The
quality and characterization of the fit and prediction is similar to the deter-
ministic model in Fig. 1. in the main text.

2http://www.cbs.gov.il/shnaton63/st02 15.pdf
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To definitively investigate the effect of demographic stochasticity we have
run stochastic simulations of our model (Eq. 1) using the maximum-like-
lihood parameter estimates. In the stochastic simulation, the incidence at
time t is given by a Poisson distribution with a mean given by the deter-
minstic equation. This value is then used in the calculation of the incidence
in the following days. The method is described in detail in [1, 8, 9]. The
Poisson distribution was derived as an approximation to a generalization of
the classical chain Binomial model [8]. We ran 1000 stochastic simulations
of the model, calculating the mean incidence and 95% prediction interval
(based on the bottom and top 2.5% incidence) for each day. The results
are shown in Fig. 5 where it is clear that stochastic effects are reasonably
within the conclusions we have derived with the deterministic framework.

In Fig. 6 we show the results from an exercise in validation. The stochas-
tic model was run with the fitted parameters 100 times. Each run was then
used as data for fitting and the parameter estimates were binned. The model
retrieves the input parameters reasonably well with a spread that is com-
parable to the confidence intervals of the parameters themselves. The red
stems are the input parameters (as found by fitting to the real data) and
the blue histograms are the parameters estimated from fitting to the fake
data created with these values.

Figure 6: Histograms of parameter values found by generating trajectories
of outbreaks using the values of the estimated parameters (red stems). Note
that the variance τ = 1/s2 is lower due to the lower volatility of Poisson noise
being compared to the reported data (see e.g. the outbreak in 2009/10).
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5 The Reff Derivation

5.1 The Basic Result

We show the derivation explaining the finding of Reff ≈ 1.3 across all flu
outbreaks by analysis of the following SIRS model with population N = 1:

Ṡ = ΛR− β(t)SI

İ = β(t)SI − γI
Ṙ = γI − ΛR

Seasonal influenza outbreaks affects all age groups and thus is not crucially
dependent on the low circulation rate of the population in terms of birth
and deaths. In all of the analytical calculations presented here we only have
seasonality as a discrete square pulse i.e. β(t) = (1± δ) of total time length
4T , where each season lasts 2T . This choice is motivated by the finding that
most outbreaks lasts approx. three months (25% of a year) and they occur
in the high season, see Fig.7. We focus on build-up of susceptible population
right after an outbreak where the number of infectives are low. We simplify
the dynamics as:

Ṡ = Λρ

İ = β0(1± δ)SI − γI (5)

Here we approximate the recovered dynamics as constant R ∼ ρ, which is
reasonable for the typically low attack rates of seasonal flu.

First, following [10] we recast the variables as: s = β0
γ S, ω = log I and

m = β0Λ
γ , which gives the following model:

ṡ = mρ
ω̇

γ
= (1± δ)s− 1

The infectives are then integrated during the remaining high season as:

ω1 − ω0

γ
= (1 + δ)

∫ T

t0

(mρt+ c0)dt− T− + t0

ω1 − ω0

γ
= (1 + δ)

mρT 2

2
+ T [c0(1 + δ)− 1]− c1

ω1 − ω0

γ
= (1 + δ)

mρT 2

2
+ T [s0(1 + δ)− 1]

The last step comes from considering that c0 is an integration constant and

c1 = (1 − δ)mρt
2
0

2 + t0[c0(1 − δ) − 1]. Simplifying the analysis we set t0 = 0
thus c1 = 0 and c0 = s0.
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The build-up continues into the low season until the high season begins
again:

ω2 − ω1

γ
= (1− δ)

∫ 3T

T
(mρt+ s0)dt− 2T

ω2 − ω1

γ
= (1− δ)[mρ(3T )2

2
− mρ(T )2

2
] + 2T [s0(1− δ)− 1]

We can then combine these two periods and calculate the difference in
infectives from the end of the outbreak to the beginning of the next:

ω2 − ω0 = 2
δmρT 2

2
+ (1− δ)mρ9T 2

2
+ 3T (s0 − 1)− Tδs0

The null-cline for s is approximately horizontal [10, 11], which means ω2 −
ω0 ≈ 0. This allows for solving for s0:

s0(δ − 3) = δmρT + (1− δ)9

2
mρT − 3

s0 = mρT
δ + 9

2(1− δ)
3− δ

+
1

1− δ/3

which in the original variables becomes:

S0 =
1

R0(1− δ/3)
+ ρΛT

δ + 9
2(1− δ)
3− δ

The build-up time lasts τ ≡ 3T , thus the susceptible population at the time
of outbreak t0 - which is where Ṡ(t0) = 0 - is in our linear approximation
simply Sb = S0 + ρΛτ according to Eq. 5. This leads to Reff ≡ R0Sb being:

Reff =
1

(1− δ/3)
+R0ρΛτ

[
1− 1

3

δ + 9
2(1− δ)
δ − 3

]
(6)

5.2 Final approximations

We make a numerical approximation to the build-up time, τ , by simulation.
Figure 7 shows the results in the interval δ ∈ [0.1, 0.4] for R0, S0, α,Λ at
standard values. The relationship τ(δ) ≈ 0.7 + 0.2δ appear as a reasonable
approximation.

We insert this approximation for τ keeping in mind that it only holds for
restricted values of the other parameters. We further approximate 1/(1 −
δ/3) ≈ 1 + δ/3 for δ small. Finally, Eqn. 6 becomes (with ρ = 1 − |S| and
R0|S| = 1):

Reff ≈ 1 +
δ + (R0 − 1)Λ(δ + 1)

3
(7)
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Figure 7: The simulated build up times τ for the estimated values of Λ = 0.15
and R0 = 3.5 (red line). A reasonable linear approximation for τ(δ) can then
be made (black line). Note that these values of τ ∼ 3

4 year are consistent
with our decision to divide a year into four time periods of length T .

From this we infer that the yearly variation in the limit cycle maximal value
of Reff arises from changes in climate, δ, if the assumption of constant R0

and constant loss-of-immunity rate, Λ, is valid.
For infectious diseases, the climate driver δ is typically not outside the

range [0.05, 0.3] see e.g. [11]. The term 1 + δ/3 lands values in the [1, 1.1]
range. The remaining term can be evaluated with reasonable values of in-
fluenza immunity loss such as Λ = 0.15 corresponding to 6-7 years of retained
immunity [12, 5, 13]. The standard values for influenza basic reproduction
rates are around R0 = 3.5 [14]. Thus the remaining term in Eq. 7 adds
another contribution of 0.14 ± 0.03 leading to Reff being typically around
1.2±0.1. Checking for wide R0 variability in the range [2, 6] we find that the
second term gives values around 0.2 ± 0.12, which only changes the overall
Reff to typically around 1.25± 0.15.

In Fig. 8 we show that the formula in Eqn. 7 performs according to
our assumptions. Except for very small seasonal amplitudes the formula
is off by roughly ∼ 0.02, which is an order of magnitude smaller than the
variability in Reff and thus negligible in the present context. Note that
for the typical parameter values of influenza the simulations cannot have
cycles. Without a climate driver the cycles must vanish i.e. Reff → 1 for
small driver values δ → 0, which is a property not accounted for in our
analytical approximation.

6 Testing the Properties of the Seasonality Driver

Figure 9 shows the effect of goodness-of-fit upon randomizing either the ILI
outbreak order or the order of climate seasons. We divide the time series into
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Figure 8: Numerical validation of the analytical results. We hold Λ = 0.15
and R0 = 3.5 (see text), while varying δ ∈ [0.05, 0.3]. The Reff of the
long term attractor at the time of outbreak is plotted against the seasonal
amplitude δ (blue circles). The analytical results are plotted for comparison
(red plus).

seasons stretching from June to June. Each segment, say June 2006 to June
2007, is then shifted to a random location, say June 2003 to June 2004 and
the segments are exchanged. This procedure is repeated 100 times. Then
we fit the period from June 2001 to June 2009 using the standard procedure
outlined above. Our results imply that the order of outbreaks is the most
important factor since the fit quality is always quite low R2 ≈ 0.5±0.1 (blue
line) under randomization.

This means that the dynamics of year-to-year susceptible build-up from
loss of immunity is the most important dynamical agent in the model. Fol-
lowing this we see that randomizing the climate seasons in a fashion similar
to the ILI outbreaks leaves a mediocre fit quality at R2 ≈ 0.7±0.1. We then
experimented with reducing the degrees of freedom by fixing parameters and
scanning a range of different values while then fitting only the S(t0) and the
temperature weight ωT . The climate weight on relative humidity we fix as a
ratio α = ωRH/ωT = 1/5. The parameter search procedure shows that the
model is remarkably robust to such a reduction of degrees of freedom with
an average goodness of R2 ≈ 0.83± 0.05.

7 The Physical Conditions in Tel Aviv

General evidence appears to support that climate could affect seasonal dy-
namics strongly in any location. There is typically a significant rise in upper
respiratory infections in populations exposed to cold spells [15]. A recent
study found that acute cooling of the feet causes vasoconstriction in the
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Figure 9: We perform randomizations to investigate the rank of 1) the order
of outbreaks (blue), 2) the climate driver (red) and 3) scanning and fixing
parameters within the ranges R0 ∈ [3, 6], the ratio ωRH/ωT ∈ [0.1, 0.3],
the reporting rate ∈ [0.1, 0.2] and the immigration rate ∈ [1, 10] while only
fitting S0 and ωT . The arrow shows the superior final full fit. We have used
R2 to emphasize the differences between the three procedures.
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upper respiratory system, which potentially lowers resistance to viral infec-
tions [16]. Classic experiments have shown that mucus clearance rates of
the respiratory tract are strongly reduced when inhaling cold air [17], which
traps the virus particles for a longer time in the trachea allowing it a greater
chance to infect the host. The influenza virus may display temperate be-
havior since experimental studies have shown that, independent of the host
immune system, both the quantity of virus particles and the duration of peak
virus shedding by infected hosts is vastly higher at 5◦C than at 20◦C [18].
In summary, it appears that in cold and dry conditions the virus particles
survive better, are airborne for a much longer time, there are many more
of them, they have easier access to cause infections and the hosts are more
susceptible.

During winter a significant number of older houses in Tel Aviv and sur-
rounding areas offer only low thermal resistance from walls, doors and win-
dow fittings. High average mid-day insolation at the Mediterranean coast-
line all year round discourages wide-spread use of heavy clothing during
winter even though the nights are cold. Tel Aviv is a high tech business
hub for workers which means that a significant part of the work force com-
mutes there from Haifa, Jerusalem and the South on a daily basis, which
is explored in a section below. At the same time Israel currently has as a
low exchange of tourists and regular commuters with neighboring countries.
These factors lends credibility as to why the influenza in Tel Aviv can be so
uniquely modulated by local climate.

8 Relationship between ILI and influenza

In order to test the relationship between ILI and influenza, we have examined
the correlation between ILI and virological surveillance data from laboratory
tests of ILI cases. The laboratory tests were performed by the Central
Virology Laboratory at the Tel-Hashomer hospital on sampled ILI cases
collected by sentinel clinics. This data is publicly available on the WHO
flunet site3.

For each season (not including the last seasons for which we have only
partial data), we have calculated the ratio of weekly ILI cases out of total ILI
cases in the influenza season (weeks 40 through 10). We have calculated the
Pearson correlation between this ratio and the ratio of positive laboratory
tests out of the total tests performed, in weeks in which at least 10 tests
were performed. The results of this procedure are presented in figure 10.
For all seasons except the 2003/04 season we obtain high correlations with r
between 0.69-0.95. In the 2003/04 season, during October, there were high
positive percentages of influenza in the lab tests while ILI rates where still
relatively low, which drove down the correlation to r = 0.2. This could

3http://www.who.int/influenza/gisrs laboratory/flunet/en/
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Figure 10
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be related to the fact that in this season, influenza came very early, before
other causes of ILI symptoms, which is why most ILI cases were attributed
to influenza, even though influenza rates were not that high yet.

The ILI time series and the lab results match the closest in the years
where there were an average number of lab tests at least above 90 per week.
In Figure 11 we show this property. Further, a threshold can be applied to
select individual weeks of all the seasons at a lower threshold of above 75
lab tests per week. In this case only the years 2006/7, 2009/10, 2010/11.
2011/12 remain and the ILI-to-lab correlations are unchanged. This shows
that we have a good correspondence between ILI and actual influenza cases
for Tel Aviv since the ILI statistics is consistently collected throughout the
period.

Figure 11: When the number of laboratory tests are high we see a high
correspondence between ILI counts and positive influenza test results. Since
the ILI registration is consistent throughout the period we conclude that the
ILI time series is a valid proxy for the true influenza epidemics.

Further details of the relation between ILI and actual influenza data may
also be found in [9].

9 Jerusalem influenza is driven by Tel Aviv

We have fitted the model to Jerusalem and Tel Aviv with a single R0 and
the result for Jerusalem is shown in panel (a) in the main text. We note
that the outbreaks in 2005 through 2008 are not recovered exactly by the
model. The overall fit quality is r = 84%.

Using a coupling term whereby a fitted fraction ψ = 30%(5) of infectives
of Tel Aviv is in contact with susceptibles of Jerusalem, and vice versa, the
fit is improved drastically to r = 94% correlation for Jerusalem, shown in
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panel (b) in main text. The model fit to Tel Aviv is almost unchanged with
this coupling relatively to the independent model. This result is seemingly
aligned with the fact that thousands of Jerusalem inhabitants commute
every day to work in the high tech business hub of Tel Aviv and surroundings.
They contract the disease in Tel Aviv and spread to the family at home
in Jerusalem. The model uses this simple modification where the newly
infected the follows the dynamics (with subscript T and J for Tel Aviv and
Jerusalem respectively):

iT(t) =
ST(t)

NT
R0(1 + δT(t))

d∑
τ=1

Pτ [iT(t− τ) + ψ · iJ(t− τ)]

iJ(t) =
SJ(t)

NJ
R0(1 + δJ(t))

d∑
τ=1

Pτ [iJ(t− τ) + ψ · iT(t− τ)]

10 Numerical procedures

10.1 SIRS model fit

Assume that the ILI counts starting from January 1st 1999 are in the array
ILI, the wavelet smoothed average daily temperature measurements are in
the array wTc and similarly the relative humidity measurements in wRHc.
We format arrays for the shocks given in 2003 and 2009 when new strains
are introduced. The start point is ts for 1st June 2001 and te is the vari-
able end time, with tp the interval length. Note that if we fit to a period
shorter than 2009 we simply only fit the shock parameters to the 2003 year.
The shock to the climate sensitivity lasts until the start of December (the
182 in the code below) and the shock to the loss-of-immunity starts on that
same date. This date was chosen since the 2003 year peaked on that date -
irregardless of the peak of following antigenic jumps.

(MATLAB script, part 1)

timNS = zeros(1,tp); \% shock array from new strain appearing

timNL = zeros(1,tp); \% shock from added loss-of-immunity

nsY = [3 9]; \% new strain in 2003 and 2009

for i=1:length(nsY)

if nsY(i)*365<tp

timNS([(nsY(i)-1)*365+1:nsY(i)*365-182])=1;

timNL([(nsY(i)-1)*365+182:nsY(i)*365])=1;

end

end

post = @(v) JointPostFlu(v,ILI(ts:te),...

[-wTc(ts:te)’ -wRHc(ts:te)’ timNS(ts:te)’ timNL(ts:te)’]);
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In order to run this script the Joint Posterior Likelihood function must be
defined as below. It takes the v array which is the parameters to be esti-
mated , the ILI data Dat, the climate (temperatures and humidity) and the
arrays defining the shocks from anti-genic shocks are columns in Clim.

(MATLAB function)

function LogPr=JointPostFlu(v,Dat,Clim)

% LogPr = JointPostFlu(v,Dat,Clim)

% -Dat is incidence data of Flu

% -Clim is a matrix of climate data

% -v is vector of parameters

% v(1) R0 is basic reproduction rate

% v(2) S0 is initial susceptible ratio in population

% v(3) weight on Temps (centered, negative)

% v(4) weight on Relative humidity (centered, negative)

% v(5) Loss-of-immunity rate

% v(6) New Strain plateau in seasonality

% v(7) New Strain plateau in Loss-of-immunity

% defining infectivity profile values for flu modelling

T = length(Dat);% number of days

N = 4e5*.45; % population size TLV with a 45 % coverage

dInf = 7; % days of infection (profile)

init = zeros(1,dInf); % zeros(1,dInf);

meanGTD = 2.285; % previously established mean infectivity

init = zeros(1,dInf);

kGTD = 2.6;

tetaGTD = meanGTD/kGTD;

P = GetGammaGenerationTimeDistribution(dInf,kGTD,tetaGTD);

% Create simulated incidence data

rf = .1; % reporting factor

imi = 1; % immigration rate of sick persons day^-1

R0 = v(1);

S0 = v(2);

alpha = v(3); % temps

beta = v(4); % rel. humidity

LOI = v(5); % Loss-of-immunity per year

newStrain = v(6); % plateau for seasonality sensitivity

newLOI = v(7); % plateau for LOI sensitivity

% define the climate array for modulating the reproduction rate
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sigma = max(0,1 + alpha * Clim(:,1) + beta * Clim(:,2));

[inf0 S I R] = RunSimulation(T,N,P,init,...

R0,S0,sigma,LOI,imi,...

newLOI,newStrain,Clim(:,3),Clim(:,4));

inf0 = inf0*rf; % the simulated ILI time series

s = v(8); % the hyper prior on the variance estimate

tau = 1/(s*s);

pP = sum(log(normpdf(inf0,Dat’,tau)));

prior = log(unifpdf(S0,0,1));

prior = prior + log(gampdf(R0,3,1));

prior = prior + log(gampdf(alpha,2,2));

prior = prior + log(gampdf(beta,2,2));

prior = prior + log(gampdf(LOI,1,1));

prior = prior + log(gampdf(newStrain,3,1));

prior = prior + log(gampdf(newLOI,1,1));

prior = prior + log(unifpdf(s,0,100));

LogPr = pP + prior;

The following function is required to define the infectivity profile within the
Joint Posterior likelihood function.

(MATLAB function)

function P=GetGammaGenerationTimeDistribution(dInf,gammaA,gammaB)

pGammaCum = gamcdf(0:dInf,gammaA,gammaB);

pGamma= pGammaCum(2:dInf+1)-pGammaCum(1:dInf);

P = pGamma/sum(pGamma);}

The simulation that is called within the Joint Likelihood function is com-
piled into a MEX function using the C-code below:

(MEX function)

/*==========================================================

* RunSimulation.c

*

* Runs a simulation of an epidemic

*

*========================================================*/

/* $Revision: 1.0.0 $ */
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#include "mex.h"

#include <stdlib.h>

#include <math.h>

/* The computational routine */

void RunSimulation(

double* i, double* S, double* I, double* R,

mwSize T, double N, double* P, mwSize d, double* init, mwSize initLen,

double R0, double S0, double* sigma, double loi, double imi,

double newloi, double nSe, double* timNS, double* timNL)

{

mwSize t;

for( t=initLen-1; t>=0; t-- ){ i[t] = init[t]; }

S[0] = S0 * N;

I[0] = i[0];

R[0] = N - S[0] - i[0];

for( t=1; t<d; t++ )

{

S[t] = S[t-1] - i[t];

I[t] += i[t];

R[t] = N - S[t] - I[t];

}

for( t=d; t<T; t++ )

{

double sum1=0;

double lambda;

mwSize tau;

for( tau=0; tau<d; tau++ ){ sum1 += P[tau]*i[t-tau-1]; }

lambda = S[t-1]/N*R0*(sigma[t]+nSe*timNS[t])*sum1+imi;

i[t] = lambda;

S[t] = S[t-1] - i[t] + (loi+newloi*timNL[t])*R[t-1]/365;

//for( tau=0; tau<d; tau++ ){ I[t] += i[t-tau-1]; }

I[t] = I[t-1] + i[t] - i[t-d];

R[t] = N - S[t] - I[t];

}

}

/* The gateway function */
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void mexFunction( int nlhs, mxArray *plhs[],

int nrhs, const mxArray *prhs[])

{

mwSize T; /* input scalar */

double N; /* 1xT input matrix */

double *P; /* 1xd input matrix */

double *init; /* 1xd input matrix */

double R0; /* input scalar*/

double S0; /* input scalar */

double *sigma; /* 1xT input matrix */

double LOI; /* input scalar */

double newStrain; /* input scalar */

double newLOI; /* input scalar */

double imi; /* input scalar */

double *timNS; /* 1xT input matrix */

double *timNL; /* 1xT input matrix */

mwSize d;

mwSize initLen;

double *iMatrix; /* 1xT output matrix */

double *SMatrix; /* 1xT output matrix */

double *IMatrix; /* 1xT output matrix */

double *RMatrix; /* 1xT output matrix */

/* check for proper number of arguments */

if(nrhs!=13) {

mexErrMsgIdAndTxt("RunSimulation:nrhs","17 inputs required.");

}

if(nlhs!=4) {

mexErrMsgIdAndTxt("RunSimulation:nlhs","4 output arrays required.");

}

T = mxGetScalar(prhs[0]);

N = mxGetScalar(prhs[1]);

P = mxGetPr(prhs[2]);

init = mxGetPr(prhs[3]);

R0 = mxGetScalar(prhs[4]);

S0 = mxGetScalar(prhs[5]);

sigma = mxGetPr(prhs[6]);

LOI = mxGetScalar(prhs[7]);

imi = mxGetScalar(prhs[8]);

newLOI = mxGetScalar(prhs[9]);

newStrain = mxGetScalar(prhs[10]);
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timNS = mxGetPr(prhs[11]);

timNL = mxGetPr(prhs[12]);

d = mxGetN(prhs[2]);

initLen = mxGetN(prhs[3]);

if(initLen > d) {

mexErrMsgIdAndTxt("RunSimulation:nlhs","init length must

be equal or smaller than length of P.");

}

/* create the output matrices */

plhs[0] = mxCreateDoubleMatrix(1,T,mxREAL);

plhs[1] = mxCreateDoubleMatrix(1,T,mxREAL);

plhs[2] = mxCreateDoubleMatrix(1,T,mxREAL);

plhs[3] = mxCreateDoubleMatrix(1,T,mxREAL);

/* get a pointer to the real data in the output matrices */

iMatrix = mxGetPr(plhs[0]);

SMatrix = mxGetPr(plhs[1]);

IMatrix = mxGetPr(plhs[2]);

RMatrix = mxGetPr(plhs[3]);

/* call the computational routine */

RunSimulation(iMatrix,SMatrix,IMatrix,RMatrix,

T,N,P,d,init,initLen,R0,S0,sigma,LOI,imi,

newLOI,newStrain,timNS,timNL);

}

The MEX-function above is compiled in MATLAB using the command:
mex RunSimulation.c.

The Markov Chain Monte Carlo sampling of the likelihood function is then
performed using the slicesample function included in the Statistics tool-
box in MATLAB.

(MATLAB script, part 2)

initial=[3.5 .25 1.2 .5 1.2 0.1 1 0.05]; % good starting values

trace=initial;

nsamples=100000;

trace=[trace ;slicesample(trace(end,:),nsamples,’logpdf’,...

post,’width’,10*ones(1,length(initial)))];

The array trace contains the sampler trace of the estimated parameters.
Upon convergence of this trace an appropriately thinned part of the tail of
trace can be averaged for extraction of values.
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10.2 HHLH Motif Probability

We note that the HHL(H) motif turns out to be a generic property of our
deterministic SIR model after an epochal jump. It is in fact the signature
of a double-period damped oscillation, that will occur whenever there is
a significant antigenic jump perturbation. Mechanistically it is reasonably
clear why the model will oscillate in this fashion and relates to the dynamics
of the susceptible pool (rather like a predator-prey oscillation). The biennial
damped oscillation of the SIR model is also well known for measles, for
example. Being generic to the model structure, the motif is not an outcome
of specific fitted parameter values but is quite robust over a reasonable
parameter range. (The particular form also relates to the specific climate
perturbation mechanism we use). This allows us to directly estimate the
probability of the motif occurring in the observed time series based on a
random null hypothesis formalism, without having to rely on post-hoc or
data-dredging arguments.

We first suppose that each year in the time series can be associated with
coarse grained amplitudes as high, medium or low. We find it unusual that
on the TWO occassions an epochal jump in virus strain appeared, namely
A/Fujian in 2003 and A/H1N1 in 2009, the motif HHL(H) appeared in the
ILI timeseries. [The fourth year in both motifs was either High or Medium,
but not Low, which we annotate as (H). This is discussed further shortly.]
We highlight this unusual occurrence in Fig. 2c in the main text where we
plot the four years beginning with the A/Fujian year in 2003-4 together with
the four years beginning with the A/H1N1 pandemic in 2009-10. The data
seemingly collapse in the sense that the observed data in both windows sit
closely on top of each other forming the same ”high-high-low-(high) data-
motif.

We then ask, what is the probability of two such motif patterns to occur
by chance, given a time-series in which there are two (High) epochal jumps
that can initiate such a motif? This can be calculated by beginning with
the observed phenomenon HHL(H) and estimating the probability of this
occurring under a random null hypothesis. In this scenario, the peak height
in each season could be viewed as an iid random variable that can either
be relatively high, medium or low. Beginning with H for an epochal jump
year, the probability of an entire motif P[HHL(H)]= 1

3
1
3

2
3 = 2/27. The

probability of two such motifs occurring if there are two antigenic jump years
(and assuming the motifs do not overlap) is then P[HHL(H) ⊗HHL(H)]=
2
27 ·

2
27 = 0.0055.

function P = motifP(N,s,a)

% N is no. iterations

% s is the sequence length
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% a is the alphabet size

c = 0;

for i=1:N

S=randi(a,1,s);

% find two jump years that allows for the motif length:

ag1=randi(s-3,1,1); % a) with enough space at the tail, and

ag2=randi(s-3,1,1);

while (abs(ag1-ag2)<4) % b) with space between jumps.

ag1=randi(s-3,1,1);

ag2=randi(s-3,1,1);

end

S(ag1)=3; % Then let each jump year be epochal, and

S(ag2)=3;

if sum(abs(S(ag1:ag1+3)-[3 3 1 3])+abs(S(ag2:ag2+3)-[3 3 1 3]))==0

c=c+1; % count how many times the two motifs appear.

end

end

P = c/N;
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