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SUPPLEMENTAL TABLE 1. Summary of Work in Ultrasound and Laser-Based 

Vaporization of Perfluorocarbon Nanodroplets 

 

Pneg is the peak negative pressure emitted by the excitation transducer. M.I. is the 

mechanical index, or the likelihood to produce bioeffects due to ultrasonic energy 

deposition. The FDA limits ultrasound exposure to an M.I. of 1.9. Most diagnostic ultrasound 

is operating at an M.I. approximately 10 times less than the FDA limit. Color indicates 

relative safety levels: green is considered safe, yellow is most likely safe, red could cause 

unwanted bioeffects. Environment indicates the medium in which the droplets were located 

during vaporization (1–16). 
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SUPPLEMENTAL FIGURE 1. Collection of acoustic parameters (transducer frequency, 

peak negative pressure, and corresponding M.I.) applied in several studies using ultrasound 

to vaporize nanodroplet emulsions (<500 nm). Numbers correspond to references listed in 

Supplemental Table 1 with further details. 
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Endogenous Photoacoustic Contrast 

Endogenous contrast-based molecular photoacoustic imaging of cancer has primarily 

focused on the oxygenation states of blood (17) (oxygenated and deoxygenated hemoglobin 

have substantially different absorption properties); however, other tissue chromophores 

including melanin, lipids, and water are also being explored (18). Spectroscopic 

photoacoustic imaging uses a priori knowledge of the absorption properties of tissue 

constituents and correlates the changes in photoacoustic amplitude taken over multiple 

wavelengths with the different absorbers via statistical methods (19). Imaging of blood and 

the oxygenation status of blood are two of the primary imaging principles for native 

photoacoustics and could be applied in cancer imaging (Fig. 3)[ID]FIG3[/ID]. Varying 

vascularization and oxygenation status is characteristic of many solid tumors (20) and can 

be quantified by photoacoustic imaging. Increased vascularization, such as in cancer, may 

produce an increase in photoacoustic signal allowing tumors to appear different from normal 

tissues in native photoacoustic images (19). However, the signal-to-noise ratio can be 

limited when intrinsic photoacoustic imaging is applied, because of the relatively high 

background imaging signal (normal tissue is also well vascularized and oxygenated). To 

further improve endogenous photoacoustic imaging, current research centers around the 

selection of appropriate imaging wavelengths and more accurate spectroscopic correlation 

methods and modeling (19,21). Alternatively, the introduction of exogenous photoacoustic 

contrast agents can substantially increase the contrast-to-noise ratio of photoacoustic 

molecular imaging. 

Exogenous Photoacoustic Contrast 

Exogenous photoacoustic contrast agents consist of a range of small molecule and 

nanoparticles that absorb light and produce signal significantly higher than tissue 

photoabsorbers. Carbon nanotubes, iron oxide particles, and organic dyes have all served 

as photoacoustic contrast agents (22). The most frequently used contrast agents, however, 

are plasmonic noble metal nanoparticles because of superior optical absorption properties 

from their ability to undergo surface plasmon resonance (collective oscillations of free 

surface electrons due to laser irradiation). Because the size and shape of the particle 

determines the number and orientation of free surface electrons that can interact with 
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different wavelengths of light, the absorption peaks can therefore be altered via changing 

chemical synthesis parameters to provide absorption at the desired wavelength. Typically 

made from gold and silver, these particles are usually less than 80 nm in their largest 

dimension and have been synthesized in many shapes including nanospheres, nanoshells, 

nanorods, nanocages, and silica-coated gold and silver particles (Fig. 2) to enhance stability 

and increase signal (22). Dual-contrast agents for combined ultrasound and photoacoustic 

imaging have also been developed to leverage the complementary character of both 

techniques. Vaporizing liquid perfluorocarbon droplets (for acoustic contrast) in which 

optically absorbing nanoparticles are embedded (gold nanorods (23 or lead sulfide 

nanospheres (24)) provide dual-contrast images through 3 mechanisms: light irradiates 

these particles, the localized thermal expansion creates a high-frequency pressure wave, 

and the wave vaporizes the surrounding liquid perfluorocarbon. This vaporization event 

produces a strong photoacoustic imaging signal substantially higher than signal from 

thermoelastic expansion. In addition to the 2 photoacoustic imaging signals, the phase 

change of perfluorocarbon into gas provides ultrasonic contrast through an increased 

change in acoustic impedance at the site of particle vaporization, compared with 

surrounding tissue, allowing for directly coregistered, molecularly specific ultrasound and 

photoacoustic contrast (Fig. 2). Some recent reviews provide more details on different 

photoacoustic contrast agents (19,21,22). 
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