Supporting Information: Synthesis of Cross-linked DNA Containing Oxidized Abasic Site Analogues

Souradyuti Ghosh and Marc M. Greenberg*

Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore MD 21218.

mgreenberg@jhu.edu

Contents:

Contents.		
1.	Figure S1. ¹ H and ¹³ C NMR spectra of 10.	(S2)
2.	Figure S2. ¹ H and ¹³ C NMR spectra of levulinyl protected 10.	(S3)
3.	Figure S3. ¹ H and ¹³ C NMR spectra of nitroveratryloxycarbonyl protected 10 .	(S4)
4.	Figure S4. ¹ H and ¹³ C NMR spectra of 12a.	(\$5)
5.	Figure S5. ¹ H and ¹³ C NMR spectra of 12b .	(S6)
6.	Figure S6. ¹ H and ¹³ C NMR spectra of 13a.	(S7)
7.	Figure S7. ¹ H and ¹³ C NMR spectra of 13b.	(S8)
8.	Figure S8. ¹ H and ³¹ P NMR spectra of 5a.	(\$9)
9.	Figure S9. ¹ H and ³¹ P NMR spectra of 5b.	(S10)
10.	Figure S10. ¹ H and ¹³ C NMR spectra of 28.	(S11)
11.	Figure S11. ¹ H and ¹³ C NMR spectra of DMT protected 28.	(S12)
12.	Figure S12. ¹ H and ¹³ C NMR spectra of 29.	(\$13)
13.	Figure S13. ¹ H and ¹³ C NMR spectra of DMT deprotected 29.	(S14)
14.	Figure S14. ¹ H and ¹³ C NMR spectra of 30 .	(S15)
15.	Figure S15. ¹ H and ¹³ C NMR spectra of 31 .	(S16)
16.	Figure S16. ¹ H and ¹³ C NMR spectra of DMT protected 31.	(S17)
17.	Figure S17. ¹ H and ³¹ P NMR spectra of 32 .	(S18)
18.	Figure S18. MALDI-TOF-MS of 14.	(S19)
19.	Figure S19. ESI-MS of 15.	(S19)
20.	Figure S20. ESI-MS of 16.	(S20)
21.	Figure S21. MALDI-TOF-MS of 17.	(S20)
22.	Figure S22. MALDI-TOF-MS of 18.	(S21)
23.	Figure S23. ESI-MS of 19.	(S21)
24.	Figure S24. ESI-MS of 20.	(S22)
25.	Figure S25. MALDI-TOF-MS of 21.	(S23)
26.	Figure S26. MALDI-TOF-MS of 33.	(S23)
27.	Figure S27. ESI-MS of 34.	(S24)
28.	Figure S28. ESI-MS of 35.	(\$25)
29.	Figure S29. RsaI and Taq ^{α} I restriction enzyme sites on 40 .	(\$25)
30.	Figure S30. Ligation for constructing 5'- ³² P-40 and restriction enzyme treatment o	f purified $5'-{}^{32}P-40$
		(S26)

Figure S1. ¹H and ¹³C NMR spectra of 10.

Figure S2. ¹H and ¹³C NMR spectra of levulinyl protected 10.

Figure S3. ¹H and ¹³C NMR spectra of nitroveratryloxycarbonyl protected 10.

Figure S4. ¹H and ¹³C NMR spectra of 12a.

Figure S5. ¹H and ¹³C NMR spectra of **12b**.

Figure S6. ¹H and ¹³C NMR spectra of 13a.

Figure S7. ¹H and ¹³C NMR spectra of **13b.**

Figure S8. ¹H and ³¹P NMR spectra of 5a.

Figure S9. ¹H and ³¹P NMR spectra of 5b.

Figure S10. ¹H and ¹³C NMR spectra of 28.

Figure S11. ¹H and ¹³C NMR spectra of DMT protected 28.

Figure S12. ¹H and ¹³C NMR spectra of 29.

Figure S13. ¹H and ¹³C NMR spectra of DMT deprotected 29.

Figure S14. ¹H and ¹³C NMR spectra of **30**.

Figure S15. ¹H and ¹³C NMR spectra of 31.

Figure S16. ¹H and ¹³C NMR spectra of DMT protected 31.

Figure S17. ¹H and ³¹P NMR spectra of **32**.

Figure S18. MALDI-TOF-MS of 14. Calc'd mass 5213.422, observed mass 5214.517.

Figure S19. ESI-MS of **15.** Calc'd mass 13304.603, observed mass 13305.800, 13344.200 $[M + K]^+$, 13365.001 $[M + K + Na]^+$, 13381.800 $[M + 2K]^+$, 13403.600 $[M + 2K + Na]^+$, 13419.300 $[M + 3K]^+$.

Figure S20. ESI-MS of **16.** Calc'd mass 13304.603, observed mass 13305.900, 13344.900 $[M + K]^+$, 13365.601 $[M + K + Na]^+$, 13382.200 $[M + 2K]^+$, 13403.700 $[M + 2K + Na]^+$, 13419.800 $[M + 3K]^+$.

Figure S21. MALDI-TOF-MS of 17. Calc'd mass 8377.514, observed mass 2763.987 (z = -3), 4188.692 (z = -2), 8376.265.

Figure S22. MALDI-TOF-MS of 18. Calc'd mass 8377.514, observed mass 2796.987 (z = -3), 4194.692 (z = -2), 8385.662.

Figure S23. ESI-MS of **19.** Calc'd mass 12718.312, observed mass 12718.700, 12756.400 $[M + K]^+$, 12793.800 $[M + 2K]^+$.

Figure S24. ESI-MS of **20.** Calc'd mass 19262.492, observed mass 19263.699, 19302.500 $[M + K]^+$, 19223.400 $[M + K + Na]^+$, 19341.400 $[M + 2K]^+$, 19361.699 $[M + 2K + Na]^+$, 19380.599 $[M + 3K]^+$.

Figure S25. MALDI-TOF-MS of 21. Calc'd mass 3983.611, observed mass 3982.567, 4004.878 $[M + Na]^+$, 4021.506 $[M + K]^+$.

Figure S26. MALDI-TOF-MS of 33. Calc'd mass 4674.102, observed mass 4673.378.

Figure S27. ESI-MS of **34**. Calc'd mass 16182.485, observed mass 16184.500, 16223.799 $[M + K]^+$, 16261.500 $[M + 2K]^+$, 16282.200 $[M + 2K + Na]^+$, 16299.700 $[M + 3K]^+$, 16320.700 $[M + 3K + Na]^+$, 16357.700 $[M + 4K + Na]^+$, 16374.700 $[M + 5K]^+$.

Figure S28. ESI-MS of **35**. Calc'd mass 16511.658, observed mass 16513.699, 16551.599 [M + K]⁺, 16589.500 [M + 2K]⁺, 16628.400 [M + 3K]⁺.

Figure S29. RsaI and Taq $^{\alpha}$ I restriction enzyme sites on 40.

Figure S30. Ligation for constructing 5'-³²P-40 and restriction enzyme treatment of purified 5'-³²P-40. (Panel A) Representative 12% denaturing PAGE gel showing the ligation to construct 5'-³²P-40. Lane 1, 10 base pair DNA ladder. Lane 2, 5'-³²P-38. Lane 3, crude reaction to produce 5'-³²P-40. (Panel B) Representative 15% denaturing PAGE gel analysis of restriction enzyme treatment of purified 5'-³²P-40. Lane 1, 10 base pair DNA ladder. Lane 2, 5'-³²P-40 without any treatment. Lane 3, 5'-³²P-40 treated with RsaI. Lane 4, 5'-³²P-40 treated with Taq^eI.