
Supplementary Note

In this supplementary note we outline the details of the modelling approach to define the

cell fate in clones induced to express Dominant-negative Mastermind-like 1 (DNM).

1 Model of cell fate behaviour in the oesophageal epithelium

To model progenitor cell fate behaviour in the oesophageal epithelium we made use of a stochas-

tic model introduced in Ref. (31). Within this framework, progenitors make stochastic fate de-

cisions in which the fate outcome of individual cell divisions is unpredictable, but defined by

fixed probabilities. Although such models do not attempt to account for the potential influence

of extrinsic factors in regulating both proliferative activity and fate choice, such factors have

been shown to not impact significantly clonal evolution in the two-dimensional homeostatic

system, pertinent to a stratified epithelium (33).

We suppose that oesophageal progenitors P , which are confined to the basal layer, divide

with rate λ, giving rise to either two progenitors (duplication, P + P ), one progenitor and one

differentiated cell (asymmetric cell division, P +D), or two differentiated cells (symmetric dif-

ferentiation, D +D). Differentiated basal cells D stratify with rate γ (D → S) and suprabasal

cells progressively S lose their nuclei with rate σ (S → ∅). Cells without nucleus are not con-

sidered since individual cells cannot be resolved by the cytoplasmic clonal marker. All events

are considered to occur stochastically. For simplicity, we consider Markov processes in which

the timing between consecutive events (division/stratification) is statistically uncorrelated.
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Applied to the normal oesophageal epithelium, previous studies have shown that the clonal

fate data is consistent with balanced stochastic cell fate in which the frequency of cell dupli-

cation is perfectly balanced by symmetric differentiation (7). To address clonal evolution of

DNM mutant cells in the wild type (WT) background, we take the simplest generalisation of

the model, allowing the frequency of symmetrical divisions to become unbalanced:

P
λ−→

⎧⎪⎨
⎪⎩
P + P with Pr. r(1 + δ) duplication

P +D with Pr. 1− 2r asymmetric cell division

D +D with Pr. r(1− δ) symmetric differentiation

(1)

The parameter r regulates the balance between symmetric and asymmetric division, while δ

defines the degree of bias towards proliferation. Any differentiated basal cell may then stratify:

D
γ−→ S (stratification) (2)

Finally, as cells move through the suprabasal cell layers, they progressively lose their nuclei:

S
σ−→ ∅ (loss of nucleus) (3)

For δ = 0, this model reduces to the established model of homeostasis (7,31) where loss of

progenitors through differentiation is perfectly compensated by duplication. In a non-homeostatic

tissue, however, cell fate may be biased, δ �= 0, leading to an overall gain/loss of progenitors.

DNM-induced clones expand much more rapidly than WT clones (Fig. 1), indicating that cell

fate is unbalanced. Nonetheless, the DNM clone size distribution retains a regular, unimodal

structure and is very broad (Fig. 2b). We therefore propose that the principle mechanism of

stochastic fate choice is retained for DNM clones, but with a potential bias δ ≥ 0.

To assess the validity of the model, and define the associated rates, we make use of the

genetic lineage tracing approach defined in the main text. Following induction of control or

DNM mice, a small fraction of cells express a hereditary fluorescent marker (YFP in control,

GFP in DNM mice) and, for the latter, DNM. By staining fixed samples at subsequent time
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points, we score the clonal progeny of individual cells by cell number, disaggregated into their

basal (b) and suprabasal (s) cell content. From the statistical ensemble of clones, we determine

the clone size distribution (CSD) which serves as the basis to define model parameters and

challenge the model.

If we focus on the fate behaviour of the progenitor population alone, the model dynamics,

Eq. 1 translates to a simple continuous time branching process, which has been extensively

studied in the past (see, e.g., (34)) For the homeostatic system, the size distribution of surviving

clones (i.e. clones that retain at least one progenitor) converges rapidly to the scaling form,

P (n) =
1

n̄(t)
e−n/n̄(t), (4)

where n̄(t) represents the average number of progenitor cells per clone. Intriguingly, this form

of the progenitor CSD is conserved even when the dynamics becomes unbalanced, δ > 0 (super-

critical branching process). However, the average progenitor cell numbers evolve differently:

n̄ =

{
1 + λrt balanced fate, δ = 0,

exp(2δλrt) unbalanced fate δ > 0 .
(5)

Thus, n̄ diverges rapidly for unbalanced fate. Although such behaviour is qualitatively consis-

tent with the observed expansion of DNM clones, it is clear that exponential growth is untenable

and must become attenuated at some point, as suggested by the clone growth curve (Fig. 1c).

We therefore expect that the model of unbalanced stochastic fate, based only on cell-intrinsic

regulation, will only be applicable at early times following DNM mutation. Later, in section 4,

we will discuss the transfer to long-time behaviour.

For the joint CSD of clones, including both progenitors and differentiated cells, analytical

results are known in the balanced case (35), but the short-term dynamics for unbalanced fate

cannot be usefully recovered in analytical form. Therefore, in the following, we use stochastic

simulations to compute the CSD as predicted by the model dynamics. For this purpose, we

make use of a Gillespie algorithm (36) to compute the stochastic evolution of model clones. The
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inferred CSD can then be compared with that obtained by experiment. From this comparison,

we derive the likelihood of the parameters using an algorithm defined in the following section.

2 Fitting procedure

2.1 Likelihood and Bayesian probability

When fitting the data by the model, we follow a maximum likelihood principle. The likelihood

L(θ) of model parameters θ = (λ, r, γ, σ, δ) represents the probability that the model with those

parameters reproduces exactly the observed experimental data D; P (D| θ). Thus, according to

the given data D, the parameters θ∗ with the maximum likelihood L∗ = L(θ∗) are those which

are most likely to reproduce the data. These parameters have therefore the highest predictive

power for the observations and are chosen as the best fit. This approach is also justified by

Bayesian statistics. The Bayesian theorem states that the probability – or better: certainty – of a

model with parameters θ, given the data D, is P (θ|D) = L(θ)P (θ)/
∫
θ
L(θ), where P (θ) is the

a priori certainty of the parameters without considering the data (37). We do not have any prior

information. Thus, we assume that a priori all parameters are equally certain, P (θ) = const.

This means that the most certain parameter value is exactly θ∗: maxθ[P (θ|D)] = P (θ∗).

The model predicts the probabilities pbs(θ) to observe clones with b basal cells and s suprabasal

cells. The data is given in the form of the CSD D = {fbs}b,s, where fbs is the frequency

of measured clone sizes with b basal and s suprabasal cells. Under the model assumptions,

the probability to observe exactly fbs times a clone with b basal cells and s suprabasal cells

is P (fbs|θ) ∼ pfbsbs , not considering the normalisation. Since, in the model, the clones evolve

independently from each other, the likelihood L(θ), i.e. the probability to observe the clone

frequencies D = {fbs}b,s simultaneously, is P ({fbs}|θ) ∼ ∏
b,s p

fbs
bs . Accounting for the nor-
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malisation, which assures that the probabilities sum to one, the likelihood is

L(θ) = P (D|θ) = [
∑

b,s fbs]!∏
b,s fbs!

×
∏
b,s

pbs(θ)
fbs , (6)

which is a multinomial distribution. When fitting datasets from different time points D1,D2, . . .

simultaneously, the likelihood for fitting the total data D is P (D|θ) =
∏

t P (Dt|θ). With the

results of simulation and Eq. 6, the likelihood of parameters θ can be computed and compared.

2.2 Likelihood distribution and maximum likelihood

To find the parameters with the maximum likelihood and their error margins, we determine the

likelihoods for a wide range of parameters. For that purpose, we ‘scan’ the parameter space by

simulating the model for a close-meshed ensemble of parameters θ and determine the likelihood

L(θ) of each of them. The parameters θ = (θ1, . . . θ5) = (λ, r, γ, σ, δ) are varied independently

from each other by a small difference Δθi (i = 1, . . . 5) within the possible range of parameters

θmin
i and θmax

i . More precisely, the simulated parameters are the set Λ = {θmin
i + jΔθi | 0 <

jΔθi < θmax
i − θmin

i ; i = 1, . . . , 5}. For each run we simulated 150000 clones.

To find the maximum likelihood parameters we first performed a rough scan over a wide

range of parameters θmin
i

(r)
, θmax

i
(r) but with large steps Δθ

(r)
i in order to get an estimate for the

range of parameters where L(θ) is essentially non-zero. The corresponding values are displayed

in Supplementary Table 1. Then the likelihood was computed taking finer steps Δθ
(f)
i within

the restricted range of parameters θmin
i

(f)
and θmax

i
(f), also displayed in Supplementary Table 1.

The parameters θ∗ with the maximum likelihood L∗ = P (D|θ∗) can then be extracted from the

resulting likelihood distribution L(θ ∈ Λ).

2.3 Error margin of parameters

The maximum likelihood parameters are subject to different sources of noise in the data and

simulations, mainly due to small numbers of clones, but also due to variations between animals.
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parameter θmin
i

(r)
θmax
i

(r) Δθi
(r) θmin

i
(f)

θmax
i

(f) Δθi
(f)

cell division rate λ 0 15w−1 1w−1 4.5w−1 7.4w−1 0.1w−1

symmetric division fraction r 0 0.15 0.01 0.03 0.1 0.005

stratification rate γ 0 10w−1 0.5w−1 0.2w−1 1.7w−1 0.1w−1

loss rate σ 0 10w−1 0.5w−1 0.2w−1 1.6w−1 0.2w−1

progenitor proliferation bias 0 1 0.1 0.6 1 0.05

Supplementary Table 1: Parameters for scanning the parameter space. For each combination of

parameters in the set Λ = {θmin
i + jΔθi | 0 < jΔθi < θmax

i − θmin
i ; i = 1, . . . 5}, the likelihood

is determined by stochastic simulations and using Eq. 6.

We therefore determine the error margin of the parameters by classifying the parameters which

are statistically acceptable1. For that purpose we define an acceptable parameter set Ω which

contains all parameters whose likelihood is above a given threshold acceptance level, according

to a likelihood-ratio test (38):

Ω =

{
θ

∣∣∣∣ L(θ)

L(θ∗)
> ε

}
. (7)

Thus we accept all parameters whose likelihood relative to the maximum likelihood is larger

than ε. It has been shown that this likelihood-ratio test is the most powerful test to classify sets

of acceptable parameters (38).

The acceptable intervals for the individual parameters are then bounded by the maximum

and minimum parameter values in this set, i.e. the lower acceptance limit of any parameter θi

is θ−i = minΩ{θi}, while the maximum acceptance limit is θ+i = maxΩ{θi}. In the following

these acceptable intervals will mark the error margins of our parameter estimation by the fitting

and we will present the fit results for each parameter in the form θi = θ∗i
+|θ+i −θ∗i |
−|θ−i −θ∗i |

. In our esti-

mations we choose an acceptance level of ε = 0.05 which means that we accept any parameters

that have at least 5% of the maximum likelihood.

1The term “acceptable parameter” is defined here in terms of hypothesis testing. If the hypothesis: ”The model

with the given parameters θ describes the data correctly” cannot be statistically rejected, the parameters θ are

acceptable.
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2.4 Confidence intervals of data points

Since the abundance of clones of a given clone size, fbs, may be very small in the experimental

data, it is subject to substantial statistical noise. In order to validate our model, we check if its

predictions for each data point are plausible, within the 95%-confidence intervals. This is the

range which, in repeated experiments, would be covered by the 95% of outcomes closest to the

average, for each data point. While we do not have the capacity to repeat the experiments an

arbitrary amount of times, we can use our model to get an estimate for the confidence ranges.

For that purpose we run the stochastic simulations a large number of N times repeatedly, taking

the best fit parameters θ∗ and the same total clone number as counted in the lineage tracing

experiments. Then, for each basal clone size b (or joint basal/suprabasal sizes (b,s)) we select

the subset of 0.95 × N outcomes which are the closest to the average (we choose N = 1000).

The range from the lowest value of this subset to the largest one gives the confidence interval.

3 Fitting analysis: short-time clonal dynamics

With this background, we turn now to the analysis of the DNM clonal data focusing on early

times post-induction. Making use of the fitting algorithm defined above, from a fit to the joint

CSD at 7 and 10 days post-induction, we obtain the parameters with maximum likelihood (best-

fit parameters) shown in Supplementary Table 2 together with their acceptable intervals. In

Figures. 2e,f and Supplementary Figures. 2a,b, the joint CSDs from experiment and simulation

with best-fit parameters are compared at 7 and 10 days post-induction. In Figures. 2b and

Supplementary Figure 2c the corresponding basal CSDs, giving the frequencies of basal cells

per clone, are also shown and compared.

Although the fits of the model to the data show generally good agreement, there are some

small but significant discrepancies. In particular, with the control data (Fig. 2e and Supplemen-
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parameter best fit value control (7)

cell division rate λ 6.0+0.4
−0.7 per week 1.9± 0.1 per week

symmetric division fraction r 0.055+0.02
−0.01 0.1± 0.01

stratification rate γ 0.8+0.3
−0.2 per week 3.5± 0.5 per week

loss rate σ 0.6+0.7
−0.4 per week 1.0 per week

progenitor proliferation bias δ 1.0+0
−0.1 0

Supplementary Table 2: Best fit parameters for the two data sets, 7 and 10 days post-induction.

tary Fig. 2a), clones with a single basal cell show a small departure from the model prediction.

Such a deviation is likely to reflect the Markovian nature of the model dynamics, which allows

for a very broad distribution of cell cycle times. If the cell division time has a natural upper limit,

the model will overestimate the frequency of small clones. Although such “synchrony” corre-

lations will influence the short-term dynamics, such effects will become erased from the clonal

record after multiple rounds of division. However, with the slow cycle rate of the progenitors in

WT (ca. once per 3.5 days on average), such effects remain visible in the experimental data at

10 days post-induction. Significantly, with the more rapid cell cycle rate of DNM progenitors

(ca. once per day on average), these effects are invisible.

Further small deviations are visible in the shape of the suprabasal distribution of DNM

clones. Once again, this deviation, which is visible only at the shorter time 7 day time point,

is likely to reflect the Markovian approximation that fails to account for potential “maturation

effects”, which may delay stratification once a basal cell has exited cycle.

Finally, the Markovian approximation, which allows cells to divide without any refractory

period following division, leads to the appearance of unfeasibly long tails of the clone size

distribution. To avoid the potential to “over-fit” these tails, we restrict the range of data to a

maximum clone size (bmax = 26, smax = 12) in the joint CSDs. This choice includes all data

in the joint CSD (10 days post-induction) except sparse regions in the tail with data points that
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are separated from the bulk by more than one point (b, s) with fbs = 0. To check whether the

cut-off in the fitting range had any significant impact on the results, we also fitted the full data

set, without the cut-off. The resulting basal CSD is shown in Supplementary Figure 2e. It can

be seen that this also gives a reasonable fit with parameters that do not depart much from the

primary fit. But one may note that the fit with the cut-off is superior in matching the bulk of the

data.

3.1 Comparison of DNM and control clones

In comparing the results of the analysis for the DNM clones and the control, several striking

differences emerge:

Unbalanced cell fate: From the fit, we find that δ = 1 is the most likely parameter, which means

that the symmetric differentiation channel appears to be completely suppressed, leading to the

functional “immortalisation” of progenitors. Although this finding alone does not completely

rule out P → DD divisions, the complete absence of pure suprabasal (“floating”) clones in the

two considered data sets provides further support for the complete suppression of this channel.

Later, in section 3.3.2, we quantify this argument to show that the P → DD divisions, if they

occur at all, must be very rare at the considered early time points.

Then, with r = 0.055, we find that 11% of divisions result in duplication and 89% in

asymmetric divisions, which means that the total fraction of PP divisions has not changed sig-

nificantly by DNM expression. Furthermore, Notch-inhibition by DNM does not suppress dif-

ferentiation through asymmetric cell division. Instead the fit suggests that putative symmetric

differentiation events result in asymmetric division.

So, in summary, the most likely cell fate decision rules in DNM clones are

P →

⎧⎪⎨
⎪⎩
P + P ≈ 10% duplication

P +D ≈ 90% asymmetric cell division

����D +D symmetric differentiation ,

(8)
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while in the WT the corresponding ratios are P → PP at 10%, P → PD at 80% and P → DD

at 10% (7).

Suppressed stratification: The stratification rate γ is much smaller (0.8 per week) than for WT

(3.5 per week).

Accelerated cell division: Finally, the cell division rate is significantly enhanced in DNM

clones (6 per week vs. 1.9 per week for WT).

3.2 Model predictions

To gain further confidence in the validity of the model, we can make use of the fit from the 7

and 10 day clonal data to predict the CSD of the 15 day time point. In doing so, we find that the

model is able to reproduce the DNM clonal data (Supplementary Fig. 2d), with predictions that

lie within the confidence interval.

For later times, no clonal data is available, since from 15 days on clones become so large

that they start to merge. We can nonetheless compare the model predictions for the average

basal cell number with the clonal area measured in the experiments. With a measured induction

frequency of 1 per 530 (± 120) cells, when the average number of basal cells per clone is

n̄, the area fraction covered by all DNM clones is n̄/530. From a comparison of the model

prediction with experiment (Supplementary Fig. 2f), we obtain excellent agreement up to 15

days post-induction, after which deviations between model and experiment start to develop.

This departure, which reflects a sub-exponential growth of clones, indicates a change in fate

behaviour at longer times.

Notably, the deviation between model and experiment occurs at around the time when clones

start to merge. On the other hand, WT cells at the edge of DNM clones stratify faster than in

the control (Fig. 3), which indicates that WT cells do not resist expansion of DNM clones.

These observations suggest that, in the first 15 days following induction, clonal expansion is
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unrestricted and proceeds with constant rates.

3.3 Consistency checks
3.3.1 Total clone size distribution

With a model dependent on 5 parameters δ, λ, r, γ, σ, it was necessary to use the full range

of data to fit the model. However, in finding that the stratification and cell loss rates of the

DNM clones are small, it is evident that cell loss does not play a significant role at early times

post-induction, t 	 1/σ. Moreover, the results above show that P → DD divisions are

effectively erased altogether at short times. Therefore, if we focus on the total CSD, the short-

term dynamics will be fully specified by just two parameters, λ and r. In this case, applying the

same statistical procedure, we obtain the best-fit parameters λ = 5.4 per week, and r = 0.065.

With these parameters, the comparison of the model and data (Supplementary Fig. 2g) shows

good agreement within the confidence range. The consistency of these results with the previous

findings provides further evidence in support of the model, Eq. 8.

3.3.2 Inhibition of symmetric differentiation

When a clone loses all of its progenitor cells by symmetric differentiation and the differentiated

cells stratify, the clone becomes detached from the basal layer. These “floating clones”, which

are seen in WT, provide direct evidence of symmetric differentiation following division. Such

events are strikingly absent in the analysis of DNM clones at 7 and 10 days post-induction, even

when further efforts were made to search for such events (following the study of an additional

320 clones at 10 days). Although these findings do not allow symmetric differentiation to be

rigorously ruled out in DNM, we can give an upper bound for its probability.

In Supplementary Table 3 we computed by simulation the expected frequency, β, of floating

clones for different values of δ, taking the best-fit values for other parameters. A floating clone,

defined by b = 0 basal cells and s > 1 suprabasal cells, emerges with probability β =
∑

s>1 p0s.
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δ β(7 days) β(10 days) Prob(no floating clone)

0.95 0.085% 0.19% 0.26

0.9 0.19% 0.36% 0.072

0.89 0.21% 0.41% 0.053

0.88 0.23% 0.45% 0.039

Supplementary Table 3: Probability for absence of floating clones for different values of δ
(simulating 106 clones, with other parameters corresponding to those listed in Supplementary

Table 2). For δ = 0.88 this probability is below 0.05, thus within a 95%-confidence level any

value of δ ≤ 0.88 can be excluded.

The probability of having no floating clones at all, as observed, is

Prob(no floating clone) = (1− β7d)
n7d(1− β10d)

n10d , (9)

where β7d,10d is the probability for floating clones 7 days and 10 days after induction, respec-

tively. Here n7d = 300 and n10d = 570 represent the total clone numbers recorded at respective

times. In Supplementary Table 3 the expected frequencies and probabilities to find no floating

clones are displayed. For δ = 1 this probability is one, while it declines for lower δ, dropping

below 0.05 around δ = 0.88. Choosing an acceptance level of 5% as before, a probability of

less that 0.05 means that the corresponding parameter is out of acceptance interval. Therefore

we conclude that the minimal value for the proliferation bias is δmin ≈ 0.88, corresponding to a

maximal fraction of symmetric differentiation events to be 0.7% on a 5%-acceptance level.

3.3.3 EdU as a clonal marker

Administration of ethinyldeoxyuridine (EdU), which is taken up during S phase and is retained

after cell division, provides a second lineage tracing marker to follow sub-clones within GFP-

marked clones. This system can therefore be used to validate the predicted clonal dynamics.

To implement this program, we administered EdU to animals 7 days after induction with

DNM and recorded the average number of EdU+ cells per DNM clone after 24h, 48h and 72h

(see Materials and Methods). In contrast to genetic labelling, we can not be sure that all EdU+
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time EdU cells/clone (model) EdU cells/clone (data)

48 h 3.03 3.28± 0.16
72 h 4.16 3.96± 0.28

Supplementary Table 4: Average cell number of EdU+ cells per clone at different times after

administration showing model predictions and lineage tracing data. The error margins represent

the statistical standard deviation of the data. The measured cell number after 24 hours has been

taken as the initial condition.

cells in a clone originate from a single EdU+ cell. Therefore, to address the model prediction

of clonal dynamics, we took the measured cell numbers at 24h EdU incorporation as an initial

condition, and analysed the prediction of the model at 48h and 72h. On the basis of the observed

division and loss rates, we supposed that no EdU cells are lost over the three days of observation.

According to the model dynamics, since only progenitor cells can divide, the average EdU+

cell number per clone n evolves in time t as

dn(t)

dt
= λnp(t) (10)

where np(t) = np(0) exp(2δλrt) denotes the average progenitor cell number (cf. Eq. 5). At

24h post-administration on average n(t0 = 24h) = 2.33 ± 0.11 cells were measured. While

the number of progenitor cells at 24h cannot be measured directly, we can infer np(t0 = 24h)

by making use of the model: assuming the first cell division to occur 8 hours after EdU incor-

poration (the approximate average time between S-phase and completed cell division (28)2),

we have np(t0) = (1 + (1 + δ)r) exp(2δλr(t0 − 8h)), where (1 + (1 + δ)r) is the average

number of progenitor cells after the first cell division. With this expression, Eq. 10 can be

integrated. The comparison of the model with the measured data is shown in Supplementary

Table 4. With the deviations between experiment and theory always within two statistical stan-

dard deviations (95% confidence interval), the best-fit parameters accurately predict the results

2Note that the time between EdU incorporation and cell division may vary. However, the final result is not very

sensitive on the exact numerical value of this offset.
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of the EdU tracing experiment.

4 Long-term clonal evolution

In section 3.2, we presented evidence that the model of unbalanced cell fate, valid at short-times

post-labelling, must become adjusted at late times. By one year post-induction, virtually all

epithelial cells express DNM without developing lesions. This suggests that the tissue attained

a new steady state where cell fate has returned to balance. However, does this balance involve

progenitor loss and replacement, or do all cell divisions lead to asymmetric fate outcome?

To monitor fate dynamics at one year after induction, we can again make use of the EdU

assay as a clonal marker (see Materials and Methods). EdU was incorporated and connected

EdU+ clusters were recorded 48 hours later. Due to high labelling frequency, not all clusters

can be assumed monoclonal. However, a certain subclass of EdU+ clusters can be unambigu-

ously classified as monoclonal and can be used for clonal analysis. In particular, since EdU

is incorporated during S-phase, we know that each connected EdU+ cluster must have derived

from a progenitor (or progenitors) and, after 48 hours, each of these progenitors must have di-

vided at least once. Therefore, EdU+ clusters must contain at least two cells and any cluster that

originates from two or more initial progenitor cells must have at least four cells. Thus, clusters

consisting of only two or three cells can be considered as unambiguously monoclonal.

Using the same basic paradigm for progenitor cell fate, we can then infer the model param-

eters by solving the Master equation describing the time evolution of the probability of each

cluster composition. Once again, with just a 48 hour chase, cell loss can again be neglected. If

we define pAB as the probability to find a two-cell cluster (doublet) with one A = P,D, S cell
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and one B = P,D, S cell, we have

dpDD

dt
= −2 γ pDD

dpPD

dt
= −(γ + λ) pPD (11)

dpPP

dt
= −2λ pPP

dpDS

dt
= 2 γ pDD − γ pDS

dpPS

dt
= γ pPD − λ pPS

dpSS
dt

= γ pDS

The probability of three-cell clusters does not need to be treated explicitly, since it follows from

normalisation of the probability distribution. This set of differential equations can be solved

analytically. As initial condition we choose the state after the first cell division at time t = t0,

when the doublet compositions reflect the cell fate decisions. Hence at t = t0 we have pDD = r,

pPP = r, pPD = 1 − 2r and all other probabilities are zero. Although the time t0 may vary

between cells, this does not affect the prediction of r. Integrating these equation, we obtain

pDD(t) = e−2γ(t−t0) r pPD = e−(γ+λ)(t−t0)(1− 2r) (12)

pPP (t) = e−2λ(t−t0) r pDS = 2 e−γ(t−t0) (1− e−γ(t−t0)) r

pPS(t) = e−λ(t−t0)(1− e−γ(t−t0))(1− 2r) pSS = (1− e−γ(t−t0))2 r

In the EdU assay, we recorded the number of EdU+ doublets and three-cell clusters and counted

the relative frequencies fBB, fBS and fSS of having each combination of basal (B) and suprabasal

cells (S). Equating the relative frequencies with the corresponding model probabilities gives

fBB = pDD + pPD + pPP , fBS = pDS + pPS, fSS = pSS , a set of equations that can be solved

uniquely for r, λ and γ (when substituting the solutions, Eqs. 12).

For the control animals we counted 39 PP-, 41 PD-, and 6 DD-doublets out of 136 clusters,

giving the frequencies fBB = 0.29, fBS = 0.30 and fSS = 0.04. Estimating t0 = 8 hours as

before (section 3.3.3), we obtain the solution for the control, 3

r = 0.155± 0.06, λ = 2.1± 0.4 per week, γ = 3.2± 0.4, per week (13)

3Error margins result from solving the equations for fAB ± one standard deviation of the counts, and applying

linear error propagation.
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(Note that r is in fact independent of t0.) These values are, within the confidence intervals,

consistent with the literature values (7), providing a benchmark for the validity of the scheme.

For the DNM-induced animals, we counted 20 PP-, 50 PD-, and 8 DD-doublets out of 199

clusters, giving the frequenciesfBB = 0.10, fBS = 0.25 and fSS = 0.04. With t0 = 8h we get

r = 0.08± 0.03, λ = 4.3± 0.6 per week, γ = 5.4± 0.4, per week (14)

Again the solution for r is independent of t0. This result shows that symmetric differentiation

is reinstated, with a ratio comparable to the control within error bars. The cell division rate

is lower than at early times but still significantly higher than in the control. Furthermore, the

stratification rate, which was significantly depressed at short times, is also increased and in

fact becomes higher than in the control. These results are consistent with the observation that

thickness of the epithelium in DNM animals is comparable to WT after one year, considering

that a higher cell division rate must be compensated by enhanced stratification to retain normal

thickness.
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