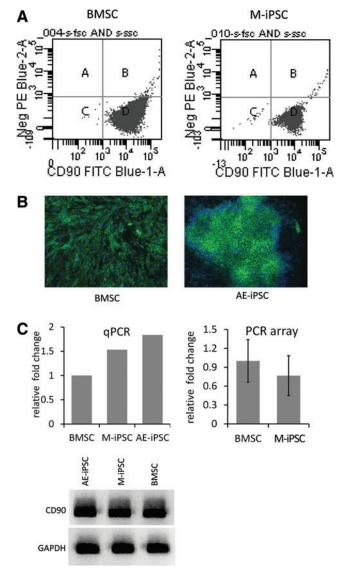
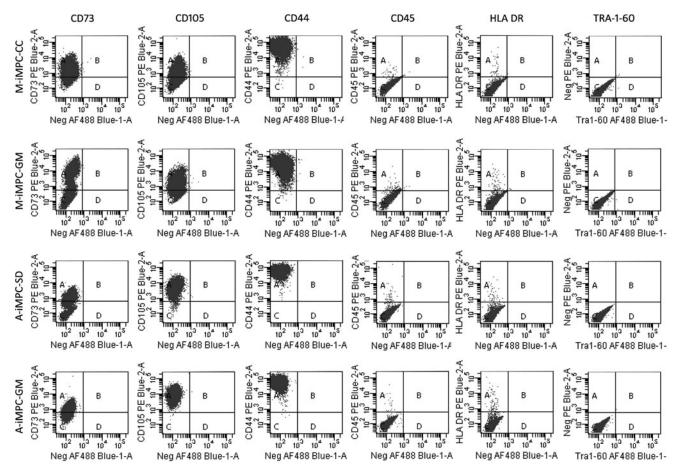
Supplementary Data

In Vivo Bone Formation by iMPCs

Materials and methods

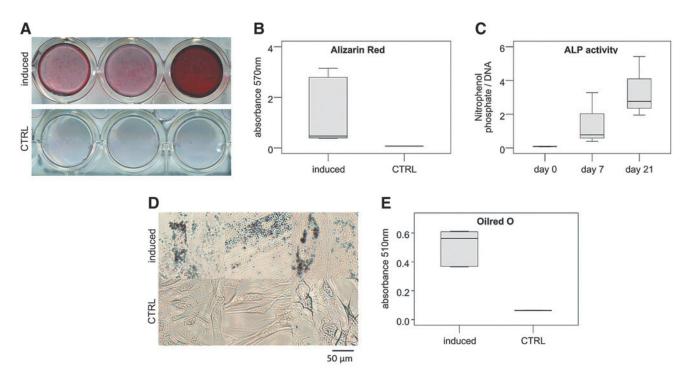

Induced pluripotent stem cell (iPSC)-derived mesenchymal stem cell (MSC)-like progenitor cells (iMPCs) $(1 \times 10^6$ M-iMPC-GMs in 10 µL) were implanted with 90 µL collagen type I carrier with 1 µg recombinant human bone morphogenetic protein-2, BMP-2 into the left thigh muscle of 2- to 3-month-old NOD CB17-Prkdc^{scid}/J mice according to an IACUC approved protocol. As control, a similar implant without BMP-2 was made in the right thigh. The implant site was monitored by micro-computed tomography (micro-CT) for approximately 6 weeks postimplantation, after which the thigh muscle was harvested and examined histologically by H&E, Alizarin Red, and Masson's Trichrome staining.

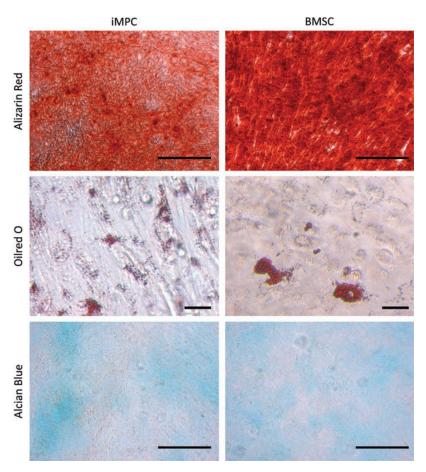
Results

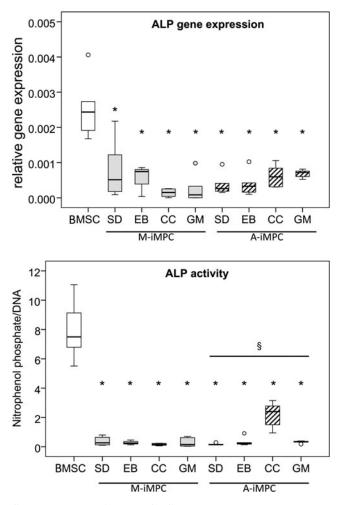

Bone formation was first observed only in the BMP-2-treated iMPC implant by micro-CT at week 2 postimplantation, and continued for approximately week 6 (Supplementary Fig. S7A). Mean bone density remained fairly constant from week 2 to 6 (318–339 mg hydroxyapatite/cm³), although bone volume decreased from 0.28 to 0.09 mm³ during the same period, suggesting tissue turnover and resorption. The presence of mineralized matrix was observed by histological staining (Supplementary Fig. S7B). In contrast, neither untreated iMPCs nor BMP-2 alone induced ectopic bone formation (Supplementary Fig. S7C).

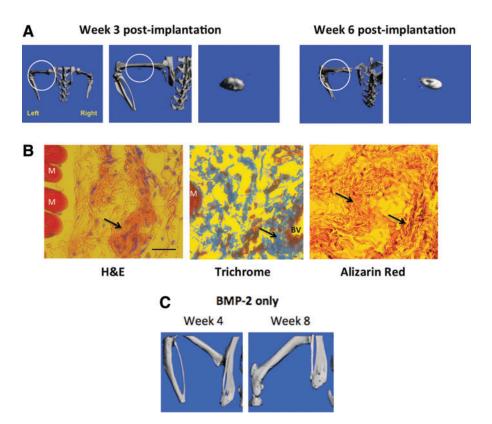
Conclusions


iMPCs were capable of BMP-2-induced osteogenesis on ectopic transplantation, and are, thus, MSC like. As anticipated, BMP-2 alone did not induce bone formation in this specific model, which is due to low retention at the implantation site.


SUPPLEMENTARY FIG. S1. CD90 is expressed in BMSCs and iPSCs. (A) Flow cytometric analysis of CD90 in BMSCs (*left*) and M-iPSCs (*right*). (B) Immunofluorescence staining of CD90 (*green*) and DAPI counter staining (*blue*) in BMSCs (*left*) and AE-iPSCs (*right*). (C) qPCR analysis of CD90 expression in BMSCs, M-iPSCs, and AE-iPSCs (*upper left*) and agarose gel bands of qPCR products (*bottom*). CD90 expression in BMSCs and MiPSCs according to qPCR array (*right*). qPCR, quantitative polymerase chain reaction.


SUPPLEMENTARY FIG. S2. Flow cytometric analysis of surface marker expression in M-iMPC-CCs, M-iMPC-GMs, A-iMPC-SDs, and A-iMPC-GMs. Assessed surface markers included those typically present on BMSCs (CD73, CD105, and CD44), typically absent on BMSCs (CD45, HLA DR), and associated with pluripotency (TRA-1-60). Analysis of iMPC surface markers was performed with pools of four to six replicate cell lines. BMSCs, bone marrow stromal cells; CC, coculture; EB, embryoid body; GM, growth medium; iMPC, induced pluripotent stem cell (iPSC)-derived mesenchymal stem cell (MSC)-like progenitor cells; SD, spontaneous differentiation.


SUPPLEMENTARY FIG. S3. Flow cytometric analysis of CD73 expression in individual iMPC lines derived from MiPSCs and AE-iPSCs as indicated. Four to six replicate cell lines were analyzed for each derivation method. CD73 expression was homogeneous within each cell line but deviated between replicate cell lines.


SUPPLEMENTARY FIG. S4. In vitro osteogenesis (**A**–**C**) and adipogenesis (**D**, **E**) of A-iMPCs in a preliminary experiment. In osteogenic medium, Alizarin Red staining (**A**, **B**) verified matrix mineralization in induced samples but not in non-induced controls. ALP activity (**C**) was negative on day 0 and strongly induced on days 7 and 21. In adipogenic medium (**D**, **E**), Oil Red O staining verified production of lipid droplets in induced samples but not in non-induced controls. iMPCs, induced pluripotent stem cell-derived MSC-like progenitor cells. ALP, alkaline phosphatase.

SUPPLEMENTARY FIG. S5. Trilineage differentiation capacity of iMPCs. One M-iMPC-GM cell line (*left*) and BMSCs (*right*) were induced to undergo osteogenesis (*top*), adipogenesis (*middle*), and chondrogenesis (*bottom*) in monolayer culture. Alizarin Red staining indicates matrix mineralization, Oil Red O, formation of lipid vesicles, and Alcian blue, deposition of sulfated glycosaminoglycans. Scale bars represent 200 µm.

SUPPLEMENTARY FIG. S6. ALP gene expression on day 21 of osteogenic induction (*top*) and enzyme activity on day 7 (*bottom*) in BMSCs versus iMPCs. Values are median (*bars*), with the boxes representing first and third quartile and whiskers representing maximal and minimal values. Outliers are depicted as *circles*. Group sizes were n=3 for BMSCs (independent replicates from one donor) and n=4-6 for iMPCs (replicate cell lines). Significant differences (p < 0.05) between iMPCs and BMSCs are designated by an *asterisk*. Significant differences (p < 0.05) between M-iMPCs are designated by §.

SUPPLEMENTARY FIG. S7. In vivo BMP-2-induced bone by formation by iMPCs. (A) Micro-computed tomography imaging. Weeks 3 and 6 images shown (*circled*). (B) Histological staining of week 6 implants. (*Left*) H&E, (*middle*) Trichrome, and (*right*) Alizarin Red, showing evidence of matrix deposition and mineralization (*arrows*). BV, blood vessel; M, muscle. Scale bar= $20 \,\mu$ m. (C) BMP-2 alone did not induce ectopic bone formation.

	iMPC-EB vs. BMSC	С		iMPC-SD vs. BMSC	J	į	iMPC-CC vs. BMSC	С	i	iMPC-GM vs. BMSC	C
	Fold regulation	P value		Fold regulation	P value		Fold regulation	P value		Fold regulation	P value
BDNF CSF3 GDF15 ICAM1	10.814 4.813 9.7491 27.1627	0.001338 0.030983 0.016135 0.007193	ITGA6 MCAM PPARG SOX2	5.9571 4.8853 15.8182 29.627	0.038336 0.018162 0.021804 0.007347	BDNF CSF2 EGF ITGA6	6.498 4.2759 7.1965 13.9898	$\begin{array}{c} 0.037362 \\ 0.000007 \\ 0.000031 \\ 0.000213 \end{array}$	GDF15 ICAM1 ITGA6 MCAM	8.849 10.5502 5.4728 4.2293	$\begin{array}{c} 0.034147\\ 0.021091\\ 0.003938\\ 0.006948\end{array}$
MCAM NES	5.1584 8.786	$0.040093 \\ 0.002814$	ANPEP BGLAP	-5.595 -7.2534	0.001829 0.005147	KDR MCAM	30.531 6.3705	0.014242 0.000002	NES SOX2	4.561 24.7001	0.032144 0.002529
NOTCH1 POU5F1 PPARG	7.0927 17.8667 17.5012	0.006026 0.014796 0.046799	BMP4 HGF VCAM1	-22.6022 -4.7863 -40.5605	0.014924 0.011637 0.006716	NES SMURF2 SOX2	8.0444 7.1157 17.9056	0.026494 0.003189 0.000021	ANPEP BGLAP ENG	- 9.4295 - 8.2898 - 5.4768	0.00125 0.005226 0.002128
PTK2 SMURF2 SOX2	4.2113 4.7024 39.0144	$\begin{array}{c} 0.025064 \\ 0.017529 \\ 0.006629 \end{array}$				ANPEP BGLAP COLIA1	- 16.604 - 8.7761 - 4.6232	0.000699 0.005277 0.015443			
ANPEP BGLAP BMP4 GDF5 THY1 VCAM1	-4.1935 -6.9754 -15.3303 -15.167 -5.0549 -5.1962	0.001796 0.005967 0.020994 0.032527 0.035722 0.019326				ENG GDF5 HGF MMP2 TGFB3 VCAM1	$\begin{array}{r} -6.8749 \\ -67.4121 \\ -21.2355 \\ -5.0184 \\ -6.5886 \\ -179.423 \end{array}$	0.000785 0.023201 0.001764 0.001497 0.017613 0.017613			

SUPPLEMENTARY TABLE S1. COMPARATIVE ANALYSIS OF GENE EXPRESSION PROFILES OF IMPCS VERSUS MSCS

CC, coculture; EB, embryoid body; GM, growth medium; iMPC, induced pluripotent stem cell (iPSC)-derived mesenchymal stem cell (MSC)-like progenitor cells; SD, spontaneous differentiation.