Supplementary Materials

Functional RNAs exhibit tolerance for non-heritable 2'-5' vs. 3'-5' backbone heterogeneity*

Aaron E. Engelhart, Matthew W. Powner, and Jack W. Szostak

*correspondence to: szostak@molbio.mgh.harvard.edu

Supplementary Figure S1. Simulated binominal distributions of 2'-5' linkages in a) a 43-linkage half-functional RNA and b) a 5-linkage core of critical residues.

Supplementary Figure S2. ¹H-NMR spectrum (400MHz, D₂O) of H1' region of dinucleotides prepared from pure 2'-ODBTMS protected phosphoramidite, pure 3'-OTMBDS phosphoramidite, and a 1:1 mixture of the two phosphoramidites.

Supplementary Figure S3. Fluorescence titrations of 1µM FMN with FMN aptamers.

Supplementary Table S1. HR-MS of synthesized RNAs.

Supplementary Figure S1. Simulated binominal distributions of 2'-5' linkages in a) a 43-linkage functional RNA (i.e., the sum of the number of linkages found in **HH1** and **HH2**) and b) a 5-linkage core of critical residues (representative of a typical non-stem region, as found in, e.g., **FMN2**).

a)

Supplementary Figure S2. ¹H-NMR spectrum (400MHz, D₂O) of H1' region of dinucleotides prepared from pure 2'-ODBTMS protected phosphoramidite, pure 3'-OTMBDS phosphoramidite, and a 1:1 mixture of the two phosphoramidites. Normalized, integrated peak intensities for the dinucleotide mixture prepared from mixed amidites are given as annotations.

Supplementary Figure S3. Fluorescence titrations of 1μ M FMN with FMN aptamers with a) 0%, b) 10%, c) 25%, and d) 50% 2'-5' linkages. Curves represent fit to data.

Strand	Level of random 2'-5' substitution	Expected Mass	Actual Mass
FMN-1	0%	6482.906	6482.8861
FMN-1	10%	6482.906	6482.9050
FMN-1	25%	6482.906	6482.9087
FMN-1	50%	6482.906	6482.9081
FMN-2	0%	6095.884	6095.8724
FMN-2	10%	6095.884	6095.8903
FMN-2	25%	6095.884	6095.8894
FMN-2	50%	6095.884	6095.8930
HH-1	0%	8504.2571	8504.1738
НН-1-С19	n/a	8534.2571	8534.1095
HH-1	10%	8534.2571	8534.1656
HH-1	25%	8534.2571	8534.1615
HH-1	50%	8534.2571	8534.1815
НН-2	0%	6473.9111	6473.8903
HH-2-G13	n/a	6473.9111	6473.8738
НН-2	10%	6473.9111	6473.8947
НН-2	25%	6473.9111	6473.8919
НН-2	50%	6473.9111	6473.9566

Supplementary Table S1. HR-MS of synthesized RNAs. LC-MS was performed on an Agilent 1200 coupled to an Agilent 6520 Accurate-Mass Q-TOF LC/MS. Masses shown are the deconvoluted monoisotopic masses.