Vaisman et al., Supplementary material

Fig. S1. Introduction of S769(AGT) \rightarrow A769(GCA) and F771(TTC) \rightarrow A771(GCA) mutations into chromosomal *polA* gene of *E. coli* MG1655. **A.** Codon replacement within the chromosomal *polA* gene done in two recombineering steps. First, the 3' *polA* region (codon 769 to the ochre stop codon) was replaced with a Zeo^R cassette. In a second recombineering step, the *polA_SD*⁻ ::*cat* allele replaced the Zeo^R cassette and introduced the altered S769A (AGT \rightarrow GCA) and F771A (TTC \rightarrow GCA) codons into the *polA* locus. **B**. PCR-amplification of genomic fragments from MG1655 *polA_SD*⁻ ::*cat* with primers cp8 and cp92 and cp61 and cp11 (Table 3) respectively, yielded fragments of 2418 bp and 687 bp characteristic for a successful *polA_SD*⁻ ::*cat* insertion. M, DNA size markers. **C**. Trace DNA sequencing file displaying the intended AGT \rightarrow GCA (Ser769) and TTC \rightarrow GCA (F771) *polA* mutations in the genome of *E. coli* MG1655 *polA_SD*⁻ ::*cat*.

Supplementary Table 1: Plasmids used in this study

Strain	Relevant Characteristics	Source or Reference
pRed/ET	Red/ET expression plasmid; pSC101 based; Ap ^R	Gene Bridges
pSKpolAint	pBluescript derivative with 3'-end of the wild-type <i>polA</i> gene and closely	[1]
	linked <i>cat</i> gene; Ap^{R} , Cm^{R}	
pJM993	pSKpolAint derivative: 3'- end of <i>polA</i> encodes S769(AGT) \rightarrow A769 (GCA)	This work
	and F771(TTC) \rightarrow A771(GCA) point mutations and closely linked <i>cat</i> gene;	
	Ap ^R , Cm ^R	
pGB2	low-copy-number, pSC101-derived vector: Spc ^R	[2]
pRW134	pGB2 derivative expressing <i>umuD'C</i> from the native <i>umuDC</i> promoter; Spc ^F	[3]
pJM963	pRW134 derivative expressing umuD' and umuC_Y11A from the	[4]
	native <i>umuDC</i> promoter: Spc ^R	

Name	Sequence	Source and Reference
cp6	5'-CAGATGTCACCTTGCAGTTGC	BioSpring
cp8	5'-AATGGCAGCGAAGCTCGAGC	BioSpring
cp11	5'-GGCGGTAGACAGCAATATCG	BioSpring
cp61	5'-GGCTTCCATGTCGGCAGAATG	BioSpring
cp92	5'-TATCAACGGTGGTATATCCAG	BioSpring
p2	5'-GTGACAGCTTATGTTGCTTACTTACGAAAAAAGGCAT	BioSpring
	GTTCAGGCGAATCTTACGCCCCGCCCTGCCACTC	
p3	5'-AGCAACGCCGTAGCGCGAAAGCGATCAACTTTGGTCT	BioSpring
	GATTTATGGCATGAATTAACCCTCACTAAAGGGCG	
P4	5'-GTGACAGCTTATGTTGCTTACTTACGAAAAAAGGCAT	BioSpring
	GTTCAGGCGAATCTAGCACGGAGTTCATTAGGGCTC	
polA-FD424	5'-CGGACTGGATACGCTGTATGC	Lofstrand/[1]
polA-RD424	5'- CTTCCAGTACCTCTTCCGACG	Lofstrand/[1]
polA-RBamHI	5'-GCTCGGATCCTTTAGTGCGCCTGATCCCAGT	Lofstrand
polA_F2105	5'-GCCAGAGGATTATGTGATTGT	Lofstrand
SSP1	5'-ATGGTACGGACGTGCTT	Lofstrand
SSP1-27	5'-ATGGTACGGACGTGCTTTAGTCGTTAA	Lofstrand
FLAPU	5'-UAGTCGTTAATCATTAGTACCAGTATCGACAG	Lofstrand
XAG49 ^a	5'-CTGTCGATACTGGTACTAATGAXTAACGACTAAAGCA	Lofstrand
	CGTCCGTACCAT	

Supplementary Table 2: Oligonucleotides used in this study

^a:**X** denotes the location of the synthetic abasic site

References

- K. Makiela-Dzbenska, M. Jaszczur, M. Banach-Orlowska, P. Jonczyk, R.M. Schaaper, I.J. Fijalkowska, Role of *Escherichia coli* DNA polymerase I in chromosomal DNA replication fidelity, Mol. Microbiol. 74 (2009) 1114-1127.
- [2] G. Churchward, D. Belin, Y. Nagamine, A pSC101-derived plasmid which shows no sequence homology to other commonly used cloning vectors, Gene 31 (1984) 165-171.
- [3] E.S. Szekeres, R. Woodgate, C.W. Lawrence, Substitution of *mucAB* or *rumAB* for *umuDC* alters the relative frequencies of the two classes of mutations induced by a site-specific T-T cyclobutane dimer and the efficiency of translesion DNA synthesis, J.Bacteriol. 178 (1996) 2559-2563.
- [4] A. Vaisman, W. Kuban, J.P. McDonald, K. Karata, W. Yang, M.F. Goodman, R. Woodgate, Critical amino acids in *Escherichia coli* responsible for sugar discrimination and basesubstitution fidelity, Nucleic Acids Res. 40 (2012) 6144-6157.