Quantile normalization of methylation signal data

We quantile normalized the methylated and unmethylated signals together. We first ordered the combined signals from lowest to highest for each individual. We then replaced each value with the respective mean of that ordered value across all individuals. So, if we have *m* sites and *n* individuals and if $x_{(i),k}$ is the *i*th ordered value for individual *k*, the quantile normalized value of $x_{(i),k}$ would be:

$$\frac{1}{n}\sum_{j=1}^n x_{(i),j}$$

For example, if A is our signal matrix:

124	588	544	412	
515	712	398	651	
671	423	645	516	,
782	814	743	687	

we then order the values for each individual:

	[124]	423	398	412
	515	588	544	516
2	671	712	645	651
	782	814	743	687
1				

take the average across the ordered values:

be:

339.25	339.25	339.25	339.25
540.75	540.75	540.75	540.75
669.75	669.75	669.75	669.75
756.5	756.5	756.5	756.5

and put the values back in their original order. Thus the quantile normalized data would

339.25	540.75	540.75	339.25
540.75	669.75	339.25	669.75
669.75	339.25	669.75	540.75
756.5	756.5	756.5	756.5

We then calculated the new β values based on these quantile normalized signals. In our example above, rows one and three are the unmethylated signal for sites 1 and 2, and rows two and four are the methylated signals for sites 1 and 2. Thus, the β value for individual 1, site 1, would be computed as 540.75/(339.25+540.75)

Correlation-based pruning of methylation data

We pruned the data separately by chromosome. If a chromosome had over 5000 CpG sites we divided it further into windows of 5000 CpG sites. We then performed the following process on each window:

- 1) Let B be our matrix of DNA methylation β values, with each row representing a CpG site and each column an individual.
- 2) Set any missing values in B equal to the mean for that CpG site.
- 3) Let R be the correlation matrix of B, with the diagonal set to zero:

0	<i>r</i> _{2,1}		$r_{5000,1}$
$r_{2,1}$	0	•••	r _{5000,2}
:	÷	·.	:
$r_{5000,1}$	$r_{5000,2}$	•••	0

where $r_{i,j}$ represents the correlation between the *i*th and *j*th CpG site.

4) For each site we then calculate the number of connections, where a connection is defined as a squared correlation above 0.25.

$$v = (v_1, v_2, \dots, v_{4999}, v_{5000})$$

where :

$$v_i = \sum_{j=1}^{5000} I(r_{i,j}^2 > .25)$$

culate.

and *I* is the indicator function.

- 5) The sites with v_i equal to zero are set aside since they have no connections as we defined them. We then focus on the reduced correlation matrix, R^{*}.
- 6) We then begin a loop removing the site with the most connections:

$$v^* = (v_1^*, v_2^*, \dots, v_n^*)$$

$$r^* = (r_1^*, r_2^*, \dots, r_n^*)$$

where v^* represents the number of connections from R^{*}, *n* is the number of CpG sites with connections, and *r*^{*} is the column sums of the absolute values of R^{*}. We remove the CpG site that had the maximum number of connections: max(*v*^{*}). If there are two or more sites with that value, we remove the one with the higher *r*^{*} value.

- Upon removing this CpG site, the row and column corresponding to it are set to zero in R^{*} and steps 7 and 8 are repeated until there are no more connections.
- Once there are no more connections the matrix of CpG sites is reassembled to include the CpG sites set aside in step 6.

We repeated this process on new windows of 5000 CpG sites, until there were no longer any connections at the r^2 >.25 level within each chromosome. In a similar fashion, we also defined a set of CpG sites pruned at the r^2 >.1 level. Supplementary Table I: Total number of sites associated with race, before and after correction for population stratification with M-values. Principal components were computed based on the M-values.

Correction	# markers used	# FDR-significant	# Holm-significant	λ_{GC}
method used	to compute PCs	CpG sites	CpG sites	
No correction	-	13440	856	2.10
GC	-	487	75	
PC _{GWAS}	54,610	0	0	
PC _{GWAS_TW}	54,610	0	0	1
$PC_{unpruned}$	409,142	52		1.55
$PC_{r2<0.1}$	121 855	0	0	1.10
PC_{0hn}	7.326	0		1.34
PC_{1bp}	17,105	1		1.33
PC_{2bp}	20,336	2	0	1.38
PC_{5bp}	31,178	6	0	1.45
PC _{10bp}	48,998	4		1.31
PC _{50bp}	174,510	0		1.15
PC_{100bp}	2/1,8//	3		1.19
			Y	
		×.•		
		• • • •		
		S		
	~0,			
	X Y			
20				
\mathbf{N}				
* *				

Supplementary Table II: Principal component (p-value, Adjusted R²) most associated with the phenotype of interest. "None" indicates that no p-values in the top ten principal components were below 0.005.

Approach	Race	Age	Row on chip	Chip	Six cell type
PCunpruned	$7(3.17 \times 10^{-86})$	4 (3.23×10 ⁻²¹ ,	$3(1.88 \times 10^{-28})$	$6(5.86 \times 10^{-31},$	$2(1.76 \times 10^{-201}, 0.01)$
PC _{r2<0.25}	$4(8.77 \times 10^{-93})$	0.20) 7 (1.38×10 ⁻²⁴ ,	$2(2.30 \times 10^{-27})$	$10(3.02 \times 10^{-20})$	$3(8.03 \times 10^{-115})$
PC _{r2<0.1}	0.66) 2 (2.02×10 ⁻³⁹ 0.36)	0.24) 7 (5.75×10 ⁻²⁶ , 0.25)	0.29) 2 (7.87×10 ⁻²⁵ , 0.27)	0.39) 6 (1.78×10 ⁻²¹ , 0.40)	$\begin{array}{c} 0.75 \\ 4 \ (3.05 \times 10^{-58}, \\ 0.51 \end{array}$
PC _{100bp}	$6 (1.63 \times 10^{-103}, 0.70)$	$\begin{array}{c} 0.23) \\ 4 (1.69 \times 10^{-21}, \\ 0.21) \\ 4 (6.72 \times 10^{-15}) \end{array}$	$3(2.87 \times 10^{-30}),$ 0.32)	$7 (8.41 \times 10^{-32})$ 0.49) 7 (7.2410 ⁻³²)	(6.91) 2 (6.02×10 ⁻¹⁹⁹ , 0.91)
PC _{50bp}	6 (3.72×10 ⁻¹⁰ , 0.37)	$4(6./2 \times 10^{-6}, 0.14)$	$3(9.76 \times 10^{-2}, 0.33)$	/ (/.24×10 , 0.49)	$2(7.5 \times 10^{-199}, 0.91)$
PC _{10bp}	3 (6.85×10 ⁻⁵⁵ ,0.46)	$5(1.31 \times 10^{-10}, 0.10)$	$\begin{array}{c} 3 (3.22 \times 10^{-20}, \\ 0.28) \end{array}$	8 (1.18×10 ⁻²⁷ , 0.45)	$2 (6.68 \times 10^{-171}, 0.87)$
PC _{5bp}	$3 (9.68 \times 10^{-68})$,0.54)	6 (1.09×10 ⁻¹² , 0.12)	$4(2.00 \times 10^{-18}, 0.21)$	8 (4.18×10 ⁻²⁵ , 0.43)	2 (3.33×10 ⁻⁹⁶ , 0.69)
PC _{2bp}	$2(4.74 \times 10^{-87})$	$6(1.67 \times 10^{-11}, 0.11)$	$4(4.03 \times 10^{-21}, 0.24)$	$4(2.00 \times 10^{-17}, 0.36)$	$3 (9.99 \times 10^{-85}, 0.65)$
PC _{1bp}	$2(1.57 \times 10^{-108} 0.72)$	$6 (5.26 \times 10^{-10}, 0.092)$	$4(6.74 \times 10^{-22}, 0.25)$	$4(8.23 \times 10^{-18}, 0.36)$	$3(5.36 \times 10^{-107}, 0.73)$
PC_{0bp}	$2(4.68 \times 10^{-82})$	$6(3.82 \times 10^{-08}, 0.075)$	$4(1.63 \times 10^{-23}, 0.26)$	$4(1.50 \times 10^{-17}, 0.36)$	$3(2.17 \times 10^{-82}, 0.63)$
PC _{GWAS}	$1(7.52 \times 10^{-162}, 0.85)$	None	$\begin{array}{c} 1 (3.79 \times 10^{-08}, \\ 0.11) \end{array}$	None	None
	~	no			
•					

Note that a similar analysis was performed for smoking, but no PCs were significant.

No population stratification Stratification present No population stratification Stratification present No correction 0.0394 0.2562 0.955 Race included as covariate 0.0346 0.0346 0.946 0.946 GC 0.0134 0.0742 0.910 0.656 PCsWas 0.0374 0.0358 0.867 0.855 PCusymend 0.0484 0.0530 0.876 0.861 PCusponed 0.0484 0.0530 0.877 0.861 PCr2-0.1 0.0524 0.0530 0.870 0.849 PCrapp 0.0468 0.0454 0.861 0.834 PClapp 0.0468 0.0454 0.861 0.834 PClapp 0.0468 0.0454 0.861 0.849 PClapp 0.0468 0.0454 0.861 0.849 PClapp 0.0468 0.0454 0.864 0.840 PClapp 0.0508 0.0498 0.868 0.856 PClopp <		Kate of ty	pe I error	Po	wer
Correction method stratification present stratification present No correction 0.0394 0.2562 0.955 Race included as covariate 0.0346 0.0346 0.946 0.946 GC 0.0134 0.0742 0.910 0.656 PC _{GWAS} 0.0374 0.0358 0.867 0.855 PC _{GWAS_TW} 0.0350 0.0328 0.949 0.938 PC _{r2} cu ₂₅ 0.0514 0.0530 0.876 0.861 PC _{r2} cu ₂₅ 0.0514 0.0530 0.870 0.849 PC _{r2} cu ₁ 0.0524 0.0530 0.870 0.849 PC _{r2} cu 0.0404 0.0472 0.836 0.828 PC lbp 0.0416 0.0466 0.861 0.834 PC sop 0.0494 0.0510 0.864 0.845 PC lop 0.0508 0.0498 0.868 0.856 PC sop 0.0504 0.0510 0.875 0.863 SVA		No population	Stratification	No population	Stratification
No correction 0.0394 0.2562 0.955 Race included as covariate 0.0346 0.0346 0.946 0.946 GC 0.0134 0.0742 0.910 0.656 PC _{GWAS} 0.0374 0.0358 0.867 0.855 PC _{GWAS_TW} 0.0350 0.0328 0.949 0.938 PC _{uppuned} 0.0484 0.0530 0.876 0.861 PC _{72-0.25} 0.0514 0.0532 0.873 0.853 PC _{0bp} 0.0404 0.0472 0.836 0.828 PC _{0bp} 0.0404 0.0472 0.836 0.828 PC _{1bp} 0.0416 0.0466 0.861 0.834 PC _{2bp} 0.0468 0.0454 0.861 0.834 PC _{5bp} 0.0518 0.0510 0.864 0.845 PC _{10bp} 0.0508 0.0498 0.868 0.856 PC _{50bp} 0.0518 0.0514 0.875 0.863 SVA 0.0487 0.0497 0.769 0.737	Correction method	stratification	present	stratification	present
Race included as covariate 0.0346 0.0346 0.946 0.946 GC 0.0134 0.0742 0.910 0.656 PC _{GWAS} 0.0374 0.0358 0.867 0.855 PC _{GWAS_TW} 0.0350 0.0328 0.949 0.938 PC _{umpuned} 0.0484 0.0530 0.876 0.861 PC _{12-0.25} 0.0514 0.0532 0.873 0.853 PC _{12-0.1} 0.0524 0.0530 0.870 0.849 PC _{10bp} 0.0416 0.0466 0.861 0.834 PC _{12-0.1} 0.0524 0.0510 0.861 0.849 PC _{12-0.2} 0.0416 0.0466 0.861 0.849 PC _{12-0.2} 0.0494 0.0510 0.864 0.845 PC _{12-0.2} 0.0494 0.0510 0.864 0.845 PC _{12-0.2} 0.0494 0.0510 0.864 0.845 PC _{12-0.2} 0.0508 0.0498 0.868 0.856 PC _{100p} 0.0504	No correction	0.0394	0.2562	0.955	
GC 0.0134 0.0742 0.910 0.656 PC _{GWAS} 0.0374 0.0358 0.867 0.855 PC _{GWAS} W 0.0350 0.0328 0.949 0.938 PC _{unpruned} 0.0484 0.0530 0.876 0.861 PC _{22-0.25} 0.0514 0.0532 0.873 0.853 PC _{12-0.1} 0.0524 0.0530 0.870 0.849 PC _{0bp} 0.0404 0.0472 0.836 0.828 PC tbp 0.0416 0.0466 0.861 0.834 PC _{2bp} 0.0448 0.0454 0.861 0.840 PC _{5bp} 0.0494 0.0510 0.864 0.845 PC tobp 0.0508 0.0498 0.868 0.856 PC sobp 0.0514 0.0514 0.874 0.864 PC tobp 0.0504 0.0510 0.875 0.863 SVA 0.0487 0.0497 0.769 0.737	Race included as covariate	0.0346	0.0346	0.946	0.946
PC GWAS 0.0374 0.0358 0.867 0.855 PC wAS_TW 0.0350 0.0328 0.949 0.938 PC uppruned 0.0484 0.0530 0.876 0.861 PC 12-0.25 0.0514 0.0532 0.873 0.853 PC 12-0.25 0.0514 0.0530 0.870 0.849 PC 12-0.1 0.0524 0.0530 0.870 0.849 PC 10p 0.0404 0.0472 0.836 0.828 PC 1bp 0.0404 0.0472 0.836 0.828 PC 1bp 0.0468 0.0454 0.861 0.849 PC 3bp 0.0468 0.0494 0.0510 0.864 0.845 PC 10bp 0.0508 0.0498 0.868 0.856 PC 30bp 0.0518 0.0514 0.875 0.863 SVA 0.0497 0.769 0.737	GC	0.0134	0.0742	0.910	0.656
PC _{GWAS_TW} 0.0350 0.0328 0.949 0.938 PC _{unpruned} 0.0484 0.0530 0.876 0.861 PC _{r2-0.25} 0.0514 0.0532 0.873 0.853 PC _{r2-0.1} 0.0524 0.0530 0.870 0.849 PC _{0bp} 0.0404 0.0472 0.836 0.828 PC _{1bp} 0.0416 0.0466 0.861 0.834 PC _{2bp} 0.0468 0.0454 0.861 0.834 PC _{5bp} 0.0494 0.0510 0.864 0.845 PC _{10bp} 0.0508 0.0498 0.868 0.856 PC _{50bp} 0.0518 0.0514 0.874 0.864 PC _{100bp} 0.0504 0.0510 0.875 0.863 SVA 0.0487 0.0497 0.769 0.737	PC _{GWAS}	0.0374	0.0358	0.867	0.855
PCuppuned 0.0484 0.0530 0.876 0.861 PC _{12-0.25} 0.0514 0.0532 0.873 0.853 PC _{72-0.1} 0.0524 0.0530 0.870 0.849 PC _{0bp} 0.0404 0.0472 0.836 0.828 PC 1bp 0.0416 0.0466 0.861 0.834 PC _{2bp} 0.0468 0.0454 0.861 0.840 PC _{5bp} 0.0494 0.0510 0.864 0.845 PC 10bp 0.0508 0.0498 0.868 0.856 PC 50bp 0.0518 0.0514 0.874 0.864 PC 100bp 0.0504 0.0510 0.875 0.863 SVA 0.0487 0.0497 0.769 0.737	PC _{GWAS_TW}	0.0350	0.0328	0.949	0.938
PC _{72-0.25} 0.0514 0.0532 0.873 0.853 PC _{72-0.1} 0.0524 0.0530 0.870 0.849 PC _{0bp} 0.0404 0.0472 0.836 0.828 PC _{1bp} 0.0416 0.0466 0.861 0.834 PC _{2bp} 0.0468 0.0454 0.861 0.840 PC _{5bp} 0.0508 0.0498 0.868 0.856 PC _{100p} 0.0518 0.0514 0.874 0.864 PC _{100bp} 0.0504 0.0510 0.875 0.863 SVA 0.0487 0.0497 0.769 0.737	PC _{unpruned}	0.0484	0.0530	0.876	0.861
PC _{122-0.1} 0.0524 0.0530 0.870 0.849 PC _{0bp} 0.0404 0.0472 0.836 0.828 PC _{1bp} 0.0416 0.0466 0.861 0.834 PC _{2bp} 0.0468 0.0454 0.861 0.840 PC _{5bp} 0.0494 0.0510 0.864 0.845 PC _{10bp} 0.0508 0.0498 0.868 0.856 PC _{50bp} 0.0518 0.0514 0.874 0.864 PC _{100bp} 0.0504 0.0510 0.875 0.863 SVA 0.0487 0.0497 0.769 0.737	PC _{r2<0.25}	0.0514	0.0532	0.873	0.853
PC _{0bp} 0.0404 0.0472 0.836 0.828 PC _{1bp} 0.0416 0.0466 0.861 0.834 PC _{2bp} 0.0468 0.0454 0.861 0.840 PC _{5bp} 0.0494 0.0510 0.864 0.845 PC _{10bp} 0.0508 0.0498 0.868 0.856 PC _{50bp} 0.0518 0.0514 0.874 0.864 PC _{100bp} 0.0504 0.0510 0.875 0.863 SVA 0.0487 0.0497 0.769 0.737	$PC_{r2 < 0.1}$	0.0524	0.0530	0.870	0.849
PC _{1bp} 0.0416 0.0466 0.861 0.834 PC _{2bp} 0.0468 0.0454 0.861 0.840 PC _{5bp} 0.0494 0.0510 0.864 0.845 PC _{10bp} 0.0508 0.0498 0.868 0.856 PC _{50bp} 0.0518 0.0514 0.874 0.864 PC _{100bp} 0.0504 0.0510 0.875 0.863 SVA 0.0487 0.0497 0.769 0.737	PC_{0bp}	0.0404	0.0472	0.836	0.828
PC _{2bp} 0.0468 0.0454 0.861 0.840 PC _{5bp} 0.0494 0.0510 0.864 0.845 PC _{10bp} 0.0508 0.0498 0.868 0.856 PC _{50bp} 0.0518 0.0514 0.874 0.864 PC _{100bp} 0.0504 0.0510 0.875 0.863 SVA 0.0487 0.0497 0.769 0.737	PC _{1bp}	0.0416	0.0466	0.861	0.834
PC _{5bp} 0.0494 0.0510 0.864 0.845 PC _{10bp} 0.0508 0.0498 0.868 0.856 PC _{50bp} 0.0518 0.0514 0.874 0.864 PC _{100bp} 0.0504 0.9510 0.875 0.863 SVA 0.0487 0.0497 0.769 0.737	PC _{2bp}	0.0468	0.0454	0.861	0.840
PC10bp 0.0508 0.0498 0.868 0.856 PC50bp 0.0518 0.0514 0.874 0.864 PC100bp 0.0504 0.0510 0.875 0.863 SVA 0.0487 0.0497 0.769 0.737	PC _{5bp}	0.0494	0.0510	0.864	0.845
PCsobp 0.0518 0.0514 0.874 0.864 PC100bp 0.0504 0.0510 0.875 0.863 SVA 0.0487 0.0497 0.769 0.737	PC _{10bp}	0.0508	0.0498	0.868	0.856
PC100bp 0.0504 0.0510 0.875 0.863 SVA 0.0487 0.0497 0.769 0.737	PC _{50bp}	0.0518	0.0514	0.874	0.864
SVA 0.0487 0.0497 0.769 0.737	PC _{100bp}	0.0504	0.0510	0.875	0.863
manuscur	SVA	0.0487	0.0497	0.769	0.737
mpiblishe		an.			
mpiloli	~	manu			
July	ished	manu			
	outoitshed	manu			
	mailolished	manu			
	mailolished	manu			

Supplementary Table III: Type I error rate and power for association of M-values with a continuous trait, by method of correction for population stratification

Supplementary Figure I: P-values shown for age-associated CpG sites with (X-axis) and without (Y-axis) cell type included as a covariate.

Supplementary Figure II: P-values for association between methylation and age, with estimated cell type proportions included as covariates.

Supplementary Figure III: P-values for association between methylation and smoking, with estimated cell type proportions included as covariates.

