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ABSTRACT A Monte Carlo simulation niethod for glob-
ular proteins, called extended-scaled-collective-variable
(ESCV) Monte Carlo, is proposed. This method combines two
Monte Carlo algorithms known as entropy-sampling and
scaled-collective-variable algorithms. Entropy-sampling
Monte Carlo is able to sample a large configurational space
even in a disordered system that has a large number of
potential barriers. In contrast, scaled-collective-variable
Monte Carlo provides an efficient sampling for a system
whose dynamics is highly cooperative. Because a globular
protein is a disordered system whose dynamics is character-
ized by collective motions, a combination of these two algo-
rithms could provide an optimal Monte Carlo simulation for
a globular protein. As a test case, we have carried out an ESCV
Monte Carlo simulation for a cell adhesive Arg-Gly-Asp-
containing peptide, Lys-Arg-Cys-Arg-Gly-Asp-Cys-Met-Asp,
and determined the conformational distribution at 300 K. The
peptide contains a disulfide bridge between the two cysteine
residues. This bond mimics the strong geometrical constraints
that result from a protein's globular nature and give rise to
highly cooperative dynamics. Computation results show that
the ESCV Monte Carlo was not trapped at any local minimum
and that the canonical distribution was correctly determined.

Globular proteins have extremely rugged potential surfaces,
which are often characterized as the multiple minima (1) or the
conformational substates (2). In such a disordered system,
adequate conformational sampling is difficult to achieve,
particularly at low temperatures because of the potential
barriers that surround low-energy regions. As a result, tradi-
tional simulation methods often become trapped in a local
energy minimum close to the starting structure.

Recently, a multicanonical (entropy sampling) Monte Carlo
algorithmT has been proposed as a way of alleviating the
sampling difficulty typically observed in disordered systems
(3-6). This method samples all energy levels equally by
introducing an energy-dependent weight function to the Me-
tropolis Monte Carlo scheme (7). Conceptually, it corresponds
to a simulation in which high (low)-energy regions are sampled
at high (low) temperatures. In this manner, potential barriers
can be overcome at high temperatures, whereas the details of
the low-energy potential surface can be traced at low temper-
atures. The canonical distribution at any temperature can be
calculated from the sampled ensemble by the reweighting
technique (8). This Monte Carlo algorithm has been used to
determine the low-temperature ensembles of various disor-
dered systems (3,4, 9-11), including a small linear peptide (12)
and lattice proteins (13-15).

However, in addition to the sampling problem, we have to
find a solution for the problem of low efficiency, or low
acceptance ratio, commonly associated with the application of
Monte Carlo simulation to a globular protein. It is difficult to

change one torsion angle without generating unrealistic inter-
atomic distances within a molecule. This problem is caused by
the highly cooperative nature of a globular protein, which
results from the strong geometrical constraints such as the
tightly packed globular shape and the unique local conforma-
tions (16). Noguti and Go (17) introduced a set of collective
variables for Monte Carlo simulation, which are derived from
a Hessian matrix of the potential energy and contain infor-
mation about protein dynamics. Their scaled-collective-
variable (SCV) algorithm has allowed efficient Monte Carlo
simulations of globular proteins (18, 19).
A combination of these two algorithms, called extended-SCV

(ESCV) Monte Carlo, might therefore be a promising way for
improving the conformational sampling of a globular protein. In
this study, as a simple test case, we have carried out an ESCV
Monte Carlo simulation of a nine-residue peptide, Lys-Arg-Cys-
Arg-Gly-Asp-Cys-Met-Asp, and have determined the conforma-
tional distribution at 300 K We chose this peptide for two
reasons. First, this peptide contains the cell-adhesive Arg-Gly-
Asp sequence and derives from a disulfide mutant of echistatin,
a potent integrin antagonist (T. Yamada and A.K, unpublished
results). As the conformation of the functional Arg-Gly-Asp
sequence is an important issue in understanding the molecular
recognition of integrins, this represents an interesting application
of the method. Second, the peptide has a strong geometrical
constraint imposed by a disulfide bond between Cys-3 and Cys-7.
This constraint ideally mimics effects in globular proteins that
result in the low efficiency of the traditional Monte Carlo method.

In the following section, we present the method of the ESCV
Monte Carlo and then show the results of the simulation.

THEORY: ESCV MONTE CARLO
We consider Metropolis Monte Carlo (7) of a globular protein
in the dihedral angle space. A trial move from conformation
m to n (from a set of dihedral angles Om to On) is accepted with
a probability, min(1, a,mpn/amnPm), where amn is a priori
transition probability (m->n) and pn is the Boltzmann prob-
ability of conformation m (20).
SCV Monte Carlo. One of the most characteristic features in

protein dynamics is that each degree of freedom, the dihedral
angles in this case, is highly correlated with one another (16). Trial
steps should be chosen so as to reflect such a collective nature of
the proteirr dynamics. In the SCV Monte Carlo (17), a priori
transition probability, a,m, is given by considering the correlation
of motion in the form of a multivariate normal distribution,

amn = N exp(-2 OmnnZ'Omn) [1]

Abbreviations: SCV, scaled collective variable; ESCV, extended SCV.
tPresent address: Biomolecular Engineering Research Institute, 6-2-3
Furuedai, Suita, Osaka 565, Japan.

I lThere are two algorithms in this context, multicanonical (3) and
entropy sampling (4), whose comparisons are found in refs. 5 and 6.
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where 06mn (= on - O,m) is a displacement vector in the dihe-
dral angle space; superscript means transpose; I is a covari-
ance matrix of 0mn, representing the correlation of dihedral
angles; and N is a normalization constant. The covariance, l,
can be estimated by a harmonic approximation,

- kTF-', [2]

where T is temperature and F is a Hessian matrix [= { 2E/
aOiaOj}] of the potential energyE at conformation m. With use
of the eigenvalues, Ak, and the eigenvectors, wk, of F (Fwk =
Akwk; k = 1, . . ., n, where n is the total degrees of freedom),
Eq. 1 is rewritten in the scaled variable form,

Otmn = NH exp(-T 2 Ak) [3]
k

where (k is the kth collective variable given by O.kAnmn, which
is scaled by IAkIj-((4b/kT)112]. The absolute symbol of Ak
is due to the fact that F is not necessarily positive definite at
conformation m. Trial moves proceed along the SCVs, 4k.

In the actual implementation, 4>k and Ak are updated every
100 steps or less frequently. Hence, in most steps, the same set
of the collective variables is used for the reverse step, n->m, so
that anm/amn = 1. Only at the steps where the collective
variables are updated did anm/amn deviate from unity. It has
been confirmed that these breaks of microscopic reversibility
do not cause any significant bias to the sampled ensemble.
Therefore, the Metropolis criterion can be min(1, Pn/Pm).

Entropy-Sampling Monte Carlo. Our purpose for the Monte
Carlo simulation is to determine the probability distribution of
a wide range of conformations at an ordinary temperature
('300 K). For this purpose, the simulation has to sample both
low-energy and high-energy conformations. The former
should be significant in the probability distribution at 300 K,
and the latter is required to cross over potential barriers. Such
a simulation can be done on a modified potential surface,
giving a flat energy distribution. Here, we follow mostly the
algorithm of entropy-sampling Monte Carlo (4, 6).
The entropy-sampling method modifies the potential sur-

face by introducing an energy-dependent weight function,
w(E), to the Metropolis scheme as

min(1, pn/Pm) = min(1, exp[-w(En) + w(Em)]) [4]

for the conventional form, Pn/Pm = exp(-En/kT + Em/kT).
The function, w(E), is chosen in such a way that a Monte Carlo
simulation with the criterion of Eq. 4 would result in a flat
energy distribution, Pw,

Pw(E) = Z 1n(E)e-w(E) = constant, [5]

where n(E) is the spectral density and Zw = XE ne-w. Even
from such an artificial ensemble of conformations, the canon-
ical distribution at any temperature T, PB(E;T), can be cor-
rectly recovered by the reweighting formula (8),

PB(E;T) = Zl'n(E)e E/kT = Z-'Z ew(E)-E/kTPw(E), [6]

where Z = 2EneE/kT
In practice, the function, w(E), is determined with the help

of a preliminary canonical Monte Carlo run by the SCV
method at a sufficiently high temperature T*,

w(E) = ln n(E) = E/kT* + ln PB(E;T*),

In summary, the ESCV Monte Carlo is performed by
employing a priori transition probability, a,mn, given by the
SCV algorithm (Eq. 3) and the term, Pn/Pm, evaluated by the
entropy-sampling algorithm (Eq. 4).

COMPUTATION
The simulation system is a nine-residue peptide, Lys-Arg-Cys-
Arg-Gly-Asp-Cys-Met-Asp, in which Cys-3 and Cys-7 form a
disulfide bond. In addition to the S-S bridge, a weak distance
restraint (3 kcal/mol) is imposed between the C, atoms of the
two terminal residues (Lys-1 and Asp-9) to maintain the
distance observed in the NMR data of echistatin (21). The
force field parameters used are those of ECEPP/2 (22), in
which all ionizable groups are in the neutral state. No solvent
molecule is considered in the simulation.

For the SCV Monte Carlo, the Hessian matrix in Eq. 2 (F)
is updated every 100 Monte Carlo steps by using FEDER (23),
a program for fast Hessian calculation. To prevent the scaling
factor in Eq. 3, IXkl-1/2, from becoming too large, we used Alimit
[= 3 kcal/(mol.rad2)] for IAkk when IAkk < Alimit. The step length
was chosen so that the acceptance ratio would be about 0.5.
The weight function, w(E), for an ESCV Monte Carlo was

determined in the following manner. A preliminary SCV
Monte Carlo run at T* (= 1000 K) accumulated up to 106
steps. Such a high temperature was necessary to cover all
possible conformations without suffering from the multiple-
minima problem. The resultant probability distribution,
PB(E;T*), with a bin size of 1 kcal/mol, was fitted and
extrapolated by a fourth-order polynomial (Fig. 1). To avoid
the oversampling of very low- and high-energy regions, the
extrapolation by the polynomial was continued smoothly by
a linear function for the regions of E ' -80 and E 2 0
(kcal/mol). With the extrapolated canonical distribution,
PB(E;T*), the weight function, w(E), was determined by Eq.
7. A refinement of w(E) by the iteration formula was not
performed for the following reason. Once the simulation
begins to cover the low-energy region, this system requires a
very long Monte Carlo run to reach equilibrium. When
considering an application of the ESCV method to globular
proteins, it is desirable to have a method of giving a good
estimate of w(E) that does not necessarily require a refine-
ment.
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where the energy-independent terms are neglected. It is
possible to refine the functional form of w(E) iteratively by
using the relationship derived from Eq. 5-i.e., wL+J(E) =

wi(E) + ln P' (E).

FIG. 1. Determination of the weight function, w(E), of Eq. 4. The
thick curve is the energy distribution (bin size of 1 kcal/mol) of the
preliminary canonical SCV Monte Carlo of 106 steps at 1000 K The
thin curve is the fourth-order polynomial fitted to the thick curve, from
which w(E) was determined by Eq. 7 (see text for details).
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FIG. 2. Energy distribution given by the ESCV Monte Carlo
simulation of the peptide. The thick curves are those after the
accumulation of 1 x 107 steps and 3 x 107 steps, whereas the thin curve
is the energy distribution of the canonical SCV Monte Carlo at 1000
K.

An ESCV Monte Carlo simulation using w(E) of Fig. 1 was
carried out to accumulate 3 x 107 Monte Carlo steps. All
computations were done on a Fujitsu VP2600 (Tokyo).

RESULTS AND DISCUSSION
Monte Carlo Simulations. An ESCV Monte Carlo simula-

tion with the weight function w(E) shown in Fig. 1 resulted in
a flat energy distribution (Fig. 2). The flat distribution, which
had already converged after 1 X 107 Monte Carlo steps,
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FIG. 3. Energy distribution of the canonical ensemble at 300, 500,
and 1000 K calculated by reweighting the sampled ensemble (the thick
solid curves). The broken curves are those of the canonical SCV Monte
Carlo runs of 5 x 106 steps, started from the conformation of step 2
X 107 of the ESCV Monte Carlo run. The dotted curve is the same as
the broken curve but started at the minimum energy conformation
found in the ESCV Monte Carlo.

confirmed that the sampling had covered all energy levels and
was thus suitable for evaluating the canonical distribution.
The reweighting operation of Eq. 6 to the sampled ensemble

yields the canonical distributions at various temperatures
shown in Fig. 3. This figure also shows the energy distributions
derived from canonical Monte Carlo runs (i.e., SCV Monte
Carlo simulations using the conventional canonical criterion;
non-SCV runs did not succeed because most of moves de-
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by reweighting the sampled ensemble.

.--
oo
8
-

0

.0

00

o aW
-180

9888 Biophysics: Kidera



Proc. Natl. Acad. Sci. USA 92 (1995) 9889

FIG. 5. Stereo Molscript drawing (24) of a representative structure of the peptide at 300 K found in the ESCV Monte Carlo simulation. Only
the side-chain atoms of the Arg-Gly-Asp and the cysteine residues are given explicitly.

stroyed the disulfide bond). At 1000 K, the canonical simula-
tion gives almost the same distribution as the ESCV simula-
tion. However, at lower temperatures, large discrepancies are

observed, with canonical simulations at 300 and 500 K becom-
ing trapped in high-energy conformations. This leads to dis-
tributions with energies higher by 20-30 kcal/mol. However,
when a canonical simulation is started from a low-energy
conformation found by the ESCV simulation, good agreement
was obtained. This shows that canonical Monte Carlo cannot
surmount potential barriers and is thus dependent on the
initial conformation.

In conclusion, the ESCV Monte Carlo method is capable of
correctly determining a probability distribution of a con-

strained peptide at 300 K. The results described above indicate
that the ESCV Monte Carlo can be a promising algorithm for
improving the conformational sampling of disordered and
cooperative systems such as globular proteins.
RGD Conformations. From a biological point of view, the

cell-adhesive Arg-Gly-Asp sequence of our test peptide is the
most important. Fig. 4 shows the probability distributions of
the main chain 4-qi angles of the Arg-Gly-Asp residues at 1000,
500, and 300 K. At 1000 K, Arg-4 and Asp-6 show ordinary
alanine-like distributions, whereas in Gly-5, conformations
with q > 0 are strongly suppressed by the geometrical con-
straint of the disulfide bond. At lower temperatures, the
conformational distributions become localized and attain an

almost single conformation at 300 K. The peaks of the
distribution locate at (4, qf) = (-70, 90), (90, -50), and (-90
or -150, 160) for Arg, Gly and Asp, respectively. A represen-
tative structure of the peptide is displayed in Fig. 5.

Recently, we showed (25) that the Arg-Gly-Asp conforma-
tions can be divided mainly into two structural classes in terms
of the distance d between the C, atoms of arginine and aspartic
acid residues and of the conformation of glycine residue: in
class 1, d = 9.0-9.5 A and glycine conformation = E, F, E*, or
F* [flavoridin (26) and foot-and-mouth disease virus (27)]; in
class 2, d = 7.5-8.5 A and glycine conformation = C* or D*
[tenascin (28), decorsin (29), and an Arg-Gly-Asp-containing
mutant of human lysozyme (30)]. Here, the conformations are

designated according to Zimmerman et al. (31), and the name
lists in brackets are the cell-adhesive proteins whose Arg-Gly-
Asp x-ray (or NMR) structures are well-defined and classified
into the respective classes.
By these criteria, the conformation of Fig. 5 is categorized

as class 2. The Monte Carlo simulation shows that the geo-
metrical constraint of the disulfide bond prohibits the confor-
mation of class 1 (Gly-5 conformation with qi > 0). Experi-
mental data indicate that the echistatin mutant, containing this
peptide as a fragment, is a more potent integrin antagonist
than wild-type echistatin, which has no disulfide constraint in
the Arg-Gly-Asp region (T. Yamada & A.K., unpublished

results). These facts suggest that the active conformation of the
Arg-Gly-Asp sequence would be class 2.

I thank Dr. M. B. Swindells for helpful discussions.

1. Vasquez, M., Nemethy, G. & Scheraga, H. A. (1994) Chem. Rev.
94, 2183-2239.

2. Frauenfelder, H., Sligar, S. G. & Wolynes, P. G. (1991) Science
254, 1598-1603.

3. Berg, B. A. & Neuhaus, T. (1991) Phys. Lett. B267, 249-253.
4. Lee, J. (1993) Phys. Rev. Leu. 71, 211-214.
5. Berg, B. A., Hansmann, U. H. E. & Okamoto, Y. (1995) J. Phys.

Chem. 99, 2236-2237.
6. Hao, M.-H. & Scheraga, H. A. (1995) J. Phys. Chem. 99, 2238.
7. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller,

A. H. & Teller, E. (1953) J. Chem. Phys. 21, 1087-1092.
8. Ferrenberg, A. M. & Swendsen, R. H. (1988) Phys. Rev. Lett. 61,

2635-2638.
9. Berg, B. A. & Celik, T. (1992) Phys. Rev. Lett. 69, 2292-2295.

10. Berg, B. A., Hansmann, U. & Neuhaus, T. (1993) Phys. Rev. B47,
497-500.

11. Berg, B. A., Celik, T. & Hansmann, U. (1993) Europhys. Lett. 22,
63-68.

12. Hansmann, U. & Okamoto, Y. (1993) J. Comput. Chem. 14,
1333-1338.

13. Hao, M.-H. & Scheraga, H. A. (1994) J. Phys. Chem. 98, 4940-
4948.

14. Hao, M.-H. & Scheraga, H. A. (1994) J. Phys. Chem. 98, 9882-
9893.

15. Hao, M.-H. & Scheraga, H. A. (1994) J. Chem. Phys. 102,
1334-1348.

16. Hayward, S. & Go, N. (1995) Annu. Rev. Phys. Chem., in press.
17. Noguti, T. & Go, N. (1985) Biopolymers 24, 527-546.
18. Go, N. & Noguti, T. (1989) Chem. Scripta 29A, 151-164.
19. Horiuchi, T. & Go, N. (1991) Proteins 10, 106-116.
20. Allen, M. P. & Tildesley, D. J. (1987) Computer Simulation of

Liquids (Oxford Univ. Press, Oxford).
21. Saudek, V., Atkinson, R. A. & Pelton, J. T. (1991) Biochemistry

30, 7369-7372.
22. Nemethy, G., Pottle, M. S. & Scheraga, H. A. (1983) J. Phys.

Chem. 87, 1883-1887.
23. Wako, H. & Go, N. (1987) J. Comput. Chem. 8, 625-635.
24. Kraulis, J. P. (1991) J. Appl. Crystallogr. 24, 946-950.
25. Yamada, T., Uyeda, A., Kidera, A. & Kikuchi, M. (1994)

Biochemistry 33, 11678-11683.
26. Senn, H. & Klaus, W. (1993) J. Mol. Biol. 232, 907-925.
27. Logan, D., Abu-Ghazaleh, R., Blakemore, W., Curry, S., Jackson,

T., King, A., Lea, S., Lewis, R., Newman, J., Parry, N., Rowlands,
D., Stuart, D. & Fry, E. (1993) Nature (London) 362, 566-568.

28. Leahy, D. J., Hendrickson, W. A., Aukhil, I. & Erickson, H. P.
(1992) Science 258, 987-991.

29. Krezel, A. M., Wagner, G., Seymour-Ulmer, J. & Lazarus, R. A.
(1994) Science 264, 1944-1947.

30. Yamada, T., Song, H., Inaka, K., Shimada, Y., Kikuchi, M. &
Matsushima, M. (1995) J. Biol. Chem. 270, 5687-5690.

31. Zimmerman, S. S., Pottle, M., Nemethy, G. & Scheraga, H. A.
(1977) Macromolecules 10, 1-9.

Biophysics: Kidera


