

# Supplemental Material to:

## Muhammad Naseem, Martin Kaltdorf, Anwar Hussain, and Thomas Dandekar\*

## The impact of cytokinin on jasmonate-salicylate antagonism in Arabidopsis immunity against infection with Pst DC3000

Plant Signaling & Behavior 2014; 9(1) http://dx.doi.org/10.4161/psb.26791

www.landesbioscience.com/journals/psb/article/26791

#### Methods

#### Generation of network topology and network simulations

The data for network setup was based on extensive literature research and data mining. Each well supported node as well as every inhibitory and activating edge of the plant hormone disease network was integrated into the network architecture. The network was created with the help of CellDesigner version 3.5.1 and compiled to SBML format (Systems Biology Markup Language).

For further analysis and Simulations the SBML files created by CellDesigner can be handled by SQUAD (Standardized Qualitative Dynamical Modeling Suite).<sup>12</sup> SQUAD automatically recognizes every single node and edge allowing an analysis of its interactions regarding steady states as well as dynamic simulations. For discrete dynamic analysis SQUAD uses generally validated assumptions: The presence of an activator can induce specific nodes whereas inhibitors are able to deactivate specific target nodes. Regarding more complex scenarios, different data was implemented into the network topology.

SQUAD identifies with a fast heuristic the total amount of steady states and calculates the activity of every single node. The simulations and equations of steady states are highlighting a systemic equilibrium and its impact due to signaling stimuli (pathogenic and/or hormonal signals). To set up an original equilibrium for continuous dynamic simulations all nodal activity values were adjusted to zero. Adjusting a single node value to 1 illustrates the systemic response towards either pathogenic or hormonal stimuli. Simultaneous adjustment of two or more stimuli allows the simulation of reciprocal effects between concerned nodes. Additionally, input values between 0 and 1 simulate partial activation of a node. Disabled states are transformed by SQUAD into time-dependent, sigmoid shaped graphs for every established node displaying their level of transcription. The original graphs are also transformed to heat maps for a better overview of the tendency of the datasets. By randomly adding and removing nodes the robustness of the complete network topology can be evaluated.

#### Analysis of micro array data

The Webtool GEO2R was used to analyze the original micro array data from GEO (Gene Expression Omnibus, http://www.ncbi.nlm.nih. gov/geo/geo2r/). GEO2R facilitates the user to compare two or more samples of GEO submitted micro array data sets. The webtool uses the Bioconducter R packages GEOquery und limma (Linear Models for Microarray Analysis). GEOquery parses the GEO-submitted array data into R data structure whereas limma utilizes multiple testing corrections for p-values to minimize the amount of false positives and identify differential expressed genes (p-value <0.05). Based on the amount of entries for each GEO-identifiers of micro array experiments mentioned above, the data was divided in either control or treated. The distribution of the selected values was calculated via value-distribution-option in GEO2R and rendered into boxplots to validate their applicability. By means of the testing procedure of the 'false discovery rate method' (FDR, <sup>15</sup> a multiple testing adjustment was applied. Hence GEO2R provides a limma-generated statistical analysis of data (corrected and raw p values, t and B values and fold changes).

#### References

**Benjamini, Y. and Hochberg, Y.** (1995). Controlling the False Discovery Rate: a Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B. 57:289–300.

Cara, A. Di, Garg, A., Micheli, G. De, Xenarios, I. and Mendoza, L. (2007). Dynamic simulation of regulatory networks using SQUAD. BMC bioinformatics. 8:462.

**Davis, S. and Meltzer, P.S.** (2007). GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics (Oxford, England). 23:1846–7.

Wettenhall, J.M. and Smyth, G.K. (2004). limmaGUI: a graphical user interface for linear modeling of microarray data. Bioinformatics (Oxford, England). 20:3705–6.

### **Supplementary Figure 1**



Resistance

S-Fig. 1. Integrated Boolean model on hormonal crosstalk in Pst DC3000-Arabidopsis Interaction. Phytohormones are small signaling molecules affecting almost all biological processes. The mutual interactions among hormone signaling pathways lead to crosstalk that eventually regulates gene expression. Information on hormonal crosstalk can be mined efficiently from public databases such as PubMed, Plant Interactome (STRING), PMN (Plant Metabolic Network) and KEGG. Moreover, pathogenic attributes of Pst DC3000 can be integrated from PPI (Plant Pathogen Interaction). All these databases can be utilized in constructing and integrating Boolean models. Starting from individual hormone biosynthesis to its signal transduction pathway inside the cell, model nodes (components of plant cells participating in hormone metabolic and signaling pathways: shown as round circles) and edges are assembled (functional interactions either activations or inhibitions: shown as green for activation and red for inhibition, respectively). Individual hormonal nodes (dark blue) are then integrated into networks nodes of Pst DC3000 (shown as red). Pst DC3000 injects effector proteins inside the cell through TTSS (red node). Nodes of Pst DC3000 are integrated to that of plant hormones regulatory networks. The network topology is designed in systems biology workbench, CellDesigner version 3.5.1. **PR1** (light blue) as important maker node is shown at the bottom of the network. In-put nodes used in the analysis such as Pst DC3000, SA, JA, MYC2 and cytokinin are boxed in rectangles. Functional evidence about behavior of selected edges as well as methods for network construction can further be studied in detail in Naseem et al. (2012).

#### **Supplementary Figure 2**



S-Fig. 2. Growth quantification of *Pst* DC3000 in *Arabidopsis* leaves treated with different hormones.

4 weeks old Col-0 Arabidopsis leaves were syringe infiltrated with *Pst* DC3000 ( $10^3$ cfu/ml). 24h before pathogen inoculation leaves were treated with 10mM MgCl2 as control, 1mM SA, 10µM Kinetin, 1mM MeJA, combination of SA and kinetin and combination of MeJA and kinetin (hormonal treatments: x-axis). Bacterial spread was quantified as colony forming units (CFU/ml:y-axis) 3 days after pathogen infiltration. Similar results were obtained in three independent experiments. (P < 0.05, t test, and ±se, n = 3). Letters on the bars represent significant differences in response to pathogen spread.

#### **Supplementary Figure3**



S-Fig. 3. Accumulation of free JA in leaves of *Arabidopsis* Col-0 plants. Accumulation of free JA: Leaves of Arabidopsis Col-0 plants were compared with and without *Pst* and cytokinin feeding. The 8 and 72-h time points indicate differences in SA accumulation: Different letters denote statistically different values (P < 0.05, t test, and ±se, n = 3). The experiment was repeated twice with similar results. FW, fresh weight.

### Supplemental Table 1

| Node to node intera | action                            |         | References                                            |
|---------------------|-----------------------------------|---------|-------------------------------------------------------|
| ATK                 | > ASD                             |         | Yoshioka et al., 2001 and Plant Cyc Database          |
| ASD                 | > HSD                             |         | Curien et al., 2005 and Plant Cyc Database            |
| HSD                 | > HSK                             |         | Lee M and Leustek 1999 and Plant Cyc Database         |
| HSK                 | > CTL                             |         | Kim et al., 2002 and Plant Cyc Database               |
| CTL                 | > MTS/HMT                         |         | Ranocha et al., 2000 and Plant Cyc Database           |
| MTS                 | > MAT                             |         | Abel et al., 1995 and Plant Cyc Database              |
| MAT                 | > ACS                             |         | Lincoln 1991 and Plant Cyc Database                   |
| ACS                 | > ET                              |         | Lincoln 1991 and Plant Cyc Database                   |
| PPS                 | > PES                             |         | Lindgren et al., 2003 and AraCyc Database             |
| PES                 | > PED                             |         | Bartley et al., 1999 and AraCyc Database              |
| PED                 | > CED                             |         | Pogson et al., 1996 and AraCyc Database               |
| CED                 | > LBC                             |         | Cunningham et al., 199 and Plant Cyc Database         |
| LBC                 | > BRH                             |         | Kim and Dellapenna 2006 and AraCyc Database           |
| BRH                 | > ZEO                             |         | Hieber et al., 2000 and AraCyc Database               |
| ZEO                 | > AED                             |         | Frechilla et al., 1999 and AraCyc Database            |
| AED                 | > XDH                             |         | Nambara et al., 2005 and AraCyc Database              |
| XDH                 | > AAO                             |         | Gonzalez et al., 2002 and Plant Cyc Database          |
| AAO                 | > ABA                             |         | Seo et al., 2000 and AraCyc Database                  |
| AGT                 | ABA                               |         | Jackson et al., 2002 and AraCyc Database              |
| IPT                 | > CTH                             |         | Kakimoto et al., 2001 AraCyc Database                 |
| CTH                 | <ul> <li>t-Zeatin (CK)</li> </ul> |         | Takei et al., 2004 and AraCyc Database                |
| CKX                 | CK                                |         | Werner et al. 2003                                    |
| LOXs                | > AOS                             |         | Feussner and Wasternack 2002 and AraCyc Database      |
| AOS                 | > AOC                             |         | Feussner and Laudert et al., 1996 and AraCyc Database |
| AOC                 | > OPRs                            |         | Hofmann et al., 2006 and Plant Cyc Database           |
| OPRs                | > OPCs                            |         | Hooks et al., 1999 and AraCyc Database                |
| OPCs                | > Jasmonate                       |         | Reymond and Farmer 1998 and AraCyc Database           |
| EDS                 | > EKS                             |         | Fleet et al., 2003 and AraCyc Database                |
| EKS                 | > EKOs                            |         | Helliwell et al., 2001 and AraCyc Database            |
| EKOs                | > EUOs                            |         | Davidson et al., 2003 and AraCyc Database             |
| EUOs                | > G20/3 Os                        |         | Lange et al., 1994 and AraCyc Database                |
| GOs                 | > GA                              |         | Lange et al., 1994 and AraCyc Database                |
| TMO, TPM, IAD       | > IAN,IAO                         |         | Ouvang et al., 2000 and AraCyc Database               |
| IAN,IAO             | > Auxin                           |         | Normanly et al., 1993 and AraCyc Database             |
| IAA-Synthase        | Auxin                             |         | Müller and Weiler 2000 and AraCyc Database            |
| SKK                 | > PCT                             |         | Singh et al., 2007 and Schmid et al., 1995            |
| PCT                 | > ICSs                            |         | Wildermuth et al., 2001 and AraCyc Database           |
| ICS,PAL             | > SA                              |         | Shah 2003 and Mauch and Slusarenko 1996               |
| ET                  | ETR                               |         | Kendrick and Chang 2008 and Kieber et al., 1993       |
| ET                  | > DELLA                           |         | Achard et al., 2003                                   |
| ET                  | ETR                               | > EIN2  | Kendrick and Chang 2008 and Alonso et al., 1999       |
| EIN2                | SCFcomp                           | > EIN3  | Solano et al., 1998 and Kendrick and Chang 2008       |
| ETR1                | > AHPs                            |         | Urao et al., 2000 and Müller and Sheen 2007           |
| EIN2                | > NPR1                            | -       | Leon-Reves et al., 2009 and Pieterse et al., 2009     |
| EIN3                | > ERF1                            |         | Solano et al., 1998 and Kendrick and Chang 2008       |
| ERF1                | > PDF 1.2                         |         | Pré, M. et al 2008 and Pieterse et al., 2009          |
| ABA                 | SA                                | -       | Flors et al., 2007                                    |
| ABA                 | > OST1 Kinase.                    |         | Mustilli et al., 2002                                 |
| OST1 K              | > Stom. Clos                      |         | Melotto et al. 2006                                   |
| Stom. Clos          | > Resistance                      | -       | Melotto et al. 2006 and Pieterse et al., 2009         |
| ABA                 | > MYC2                            |         | Anderson et al., 2004 and Abe et al., 2003            |
| GA                  | > GID1                            | -       | Zentella et al., 2007                                 |
| GID1                | > SCF                             | DELLA   | Griffiths et al., 2006                                |
| GA                  | > SA                              | •       | Navarro et al., 2008 and Alonso-Ramirez et al. 2009   |
| DELLA               | JAZ                               |         | Hou et al., 2010 and Navarro et al., 2008             |
| DELLA               | > ABA                             |         | Zentella et al., 2007                                 |
| DELLA               | GA                                |         | Zentella et al., 2007                                 |
| DELLA               | SA                                |         | Navarro et al., 2008 and Alonso-Ramirez et al. 2009   |
| DELLA               | ROS                               |         | Achard et al., 2008 and Grant and Jones 2009          |
| Auxin               | Cvtokinin                         |         | Nordstrom et al., 2004 and Liu et al. 2010            |
| Auxin               | > TIR1                            |         | Dharmasiri et al., 2005                               |
| Αυχίαα              | ARFs                              |         | Benjamins and Scheres 2008 and I Ilmasov et al 1007   |
| Auxin               | > SCFTIR1                         | AUX/IAA | Tiwari et al., 2001 and Santner and Estelle 2009      |
|                     |                                   |         | ,                                                     |

| Auxin         | > JA            |             | Liu et al., 2006                                     |
|---------------|-----------------|-------------|------------------------------------------------------|
| Auxin         | > AFB1          | SA          | Robert-Seilaniantz et al, 2011                       |
| Auxin         | > Ethylene      |             | Arteca and Arteca 2008                               |
| JA            | > SCF-COI       |             | Katsir et al., 2008                                  |
| JA            | > SCF-COI       | JAZ         | Pieterse et al., 2009 and Katsir et al., 2008        |
| JAZ           | > MYC2          |             | Lorenzo and Solano 2005 and Pré et al. 2008          |
| JAZ           | > ERF1          |             | Lorenzo and Solano 2005                              |
| MYC2          | > LOX2          |             | Mao et al., 2007 and Bari et al., 2009               |
| WRKY 62       | LOX2            |             | Pieterse et al., 2009 and Mao et al., 2007           |
| GRX480        | PDF 1.2         |             | Ndamukong et al., 2007 and Bari et al., 2009         |
| WRKY70        | PDF1.2          |             | Li et al., 2006                                      |
| MYC2          | I SA            |             | Laurie-Berry et al., 2006                            |
| MYC2          | PR-1            |             | Kazan and Manners 2008 and Laurie-Berry et al., 2006 |
| SA            | > NPR1          |             | Mou et al., 2003 and Dong 2004                       |
| NPR1          | > TGA-TF        |             | Loake and Grant 2007 and Mou et al., 2003            |
| NPR1          | > GRX480        | > TGA > PR1 | Ndamukong et al. 2007                                |
| NPR1          | > WBKY 62       |             | Mao et al. 2007                                      |
| GRX480        |                 | I PDF1.2    | Ndamukong et al. 2007 and Bari et al. 2009           |
| NPR1          |                 | 1011.2      |                                                      |
|               |                 |             | Wang et al. 2007                                     |
|               |                 |             |                                                      |
|               |                 |             | Li et al., 2004, 2000                                |
|               |                 |             | Journot-Catalino et al., 2006                        |
| WRKT17        |                 |             | Journot-Catalino et al., 2006                        |
|               |                 |             | Zhang et al. 2007                                    |
| WRKT 25       | PRI             |             | Zheng et al., 2007                                   |
|               | AUS             |             |                                                      |
| BARRS         | > IGA           | > PR-1      | Choi et al., 2010                                    |
| BARRS         | > CKX           |             | Muller and Sheen 2007                                |
|               | PR1             |             | Choi et al., 2010                                    |
| AARRS         | > PhyB          |             | Muller and Sheen 2007                                |
| PhyB          | > SA            |             | Genoud et al., 2001                                  |
| Pst DC3000    | > Flagellin     |             | Zipfel et al., 2004                                  |
| Flagellin     | > FLS2          |             | Zipfel et al., 2004                                  |
| Flag          | > FLS2          | > BAK1      | Chinchilla et al., 2007                              |
| > BAK1        | > MAPK1,2,3,4   |             | Zipfel et al., 2006                                  |
| Pst DC3000    | > EF            | > EFR       | Zipfel et al., 2006 and Nekrasov et al., 2009        |
| > EFR         | > MAPK4 and 6   |             | Nekrasov et al., 2009                                |
| > BAK1        | >MAPK1          | > PR1       | Gust et al., 2007 and Andreasson et al., 2005        |
| FLS2          | > BAK           | > NADPH-Oxi | Torres et al., 1998 and Mersmann et al., 2010        |
| BAK           | > NADPH-Oxi     | > ROS       | Panstruga et al., 2009 and Torres et al., 1998       |
| ROS           | > \$A           |             | Torres et al., 1998 and Draper 1997                  |
| SA            | > ROS           |             | Klessig et al., 2000 and Torres et al., 1998         |
| FLS2          | > BAK           | > DELLA     | Navarro et al., 2008 and Grant and Jones 2009        |
| DELLA         | ROS             |             | Grant and Jones 2009 and Achard et al., 2008         |
| FLS2          | > BAK           | > mirRNA393 | Navarro et al., 2006                                 |
| miRNA 393     | ARF1and TIR1    |             | Pieterse et al., 2009 and Navarro et al., 2006       |
| AvrPtoB       | mir393          |             | Navarro et al., 2008                                 |
| MAPK4         | > MKS1          |             | Andreasson et al., 2005                              |
| MAPK4         | PAD4 and EDS1   |             | Andreasson et al., 2005 and Brodersen et al., 2006   |
| MSK1          | WRKY 25 and 33  |             | Andreasson et al., 2005                              |
| WRKY25 and 33 | PR1             |             | Zhang et al., 2007 and loke and Grant 2007           |
| MAPK4         | > WRKY25        |             | Loke and Grant 2007 and Andreasson et al., 2005      |
| PAD4 and EDS1 | > SA            |             | Feys et al., 2001                                    |
| PAD4 and EDS1 | AL              |             | Brodersen et al., 2006 and Loke and Grant 2007       |
| MAPK4         | SA              |             | Petersen et al., 2000                                |
| FLS2-BAK1     | > Callose       |             | Luna et al., 2011                                    |
| FLS2, EFR     | > MAPK3,2,1     |             | Panstruga et al., 2009                               |
| PstDC3000     | > Avr PtoB      |             | de toress-Zabala et al., 2007                        |
| AvrPtoB       | mir393          |             | Navarro et al., 2008                                 |
| Pst DC        | > AvrPtoB       | > ABA       | Zabala et al., 2007                                  |
| AvrPtoB       | FLS2-BAK1       |             | Shan et al., 2008                                    |
| T-LRRs        | > PAD4 and EDS1 |             | Volt et al., 2009 and Aarts et al., 1998             |
| CC-NB-LRRs    | > NDR1          | > SA        | Century et al., 1997 and Volt et al., 2009           |
| AvrPtoB       | > CC-NB-LRR     |             | Collier and Moffett 2009                             |

|                            |                        | 7                                                            |
|----------------------------|------------------------|--------------------------------------------------------------|
| AvrRpm1                    | > CC-NB-LRR            | Panstruga et al., 2009 and Collier and Moffett 2009          |
| Pst                        | > Avr Rpt2 > Auxin     | Chen et al., 2007                                            |
| Avr Rpt2                   | > CC-NB-LRR            | Panstruga et al., 2009 and Collier and Motfett 2009          |
| Pst                        | > HOPAIA > TIRNB-LRR   |                                                              |
| Pst                        | > Coronatine > COI JAZ | Panstruga et al., 2009 and Block et al., 2005                |
| HopAI1                     | MAPK3 and MAPK6        | Zhang et al., 2007                                           |
| SA                         | Catalase               | <br>Chen et al., 1993                                        |
| Catalase                   | I ROS                  | Chen et al., 1993                                            |
| SA                         | Ascorbate Peroxidase   | Durner and Klesssig 1995                                     |
| Ascorbate Peroxidase       | ROS                    | Durner and Klesssig 1995                                     |
| extracellular Peroxidase   | > ROS                  | Kawano et al. 1998, Kawano 2003 and Kunihiro et al. 2011     |
| NADPH oxidase              | > ROS                  | Kawano et al. 1998, Kawano 2003 and Kunihiro et al. 2011     |
| Superoxide disumtase (SOD) | ROS                    | Mori et al. 2001, Khokon et al. 2011                         |
| JA                         | > JAR1                 | Farmer et al. 2010                                           |
| JAR1                       | > SCFCOI/CSN           | Farmer et al. 2010                                           |
| miR319a                    | JA                     | Schommer et al. 2008                                         |
| JA responsive genes        | > JA                   | Farmer et al. 2010                                           |
| NPR1                       | SCFCOI/CSN             | Farmer et al. 2010                                           |
| SCFCOI/CSN                 | I JAZ1                 | Chini et al. 2007. Katsir et al. 2008 and Thines et al. 2007 |
| SCFCOI/CSN                 | JAZ2                   | Chini et al. 2007, Katsir et al. 2008                        |
| SCFCOI/CSN                 | JAZ3                   | Chini et al. 2007. Katsir et al. 2008                        |
| SCFCOI/CSN                 | I JAZ4                 | Chini et al. 2007. Katsir et al. 2008                        |
| SCFCOI/CSN                 | JAZ5                   | Chini et al. 2007, Katsir et al. 2008                        |
| SCFCOI/CSN                 | JAZ6                   | Chini et al. 2007, Katsir et al. 2008                        |
| SCFCOI/CSN                 | JAZ7                   | Chini et al. 2007, Katsir et al. 2008                        |
| SCFCOI/CSN                 | JAZ8                   | Chini et al. 2007, Katsir et al. 2008                        |
| SCFCOI/CSN                 | JAZ9                   | Chini et al. 2007, Katsir et al. 2008                        |
| SCFCOI/CSN                 | JAZ10/JAS1             | Chini et al. 2007, Katsir et al. 2008                        |
| SCFCOI/CSN                 | JAZ11                  | Chini et al. 2007, Katsir et al. 2008                        |
| SCFCOI/CSN                 | JAZ12                  | Chini et al. 2007, Katsir et al. 2008                        |
| JAZ1                       | MYC2                   | Chini et al. 2007, Katsir et al. 2008                        |
| JAZ2                       | MYC2                   | Chini et al. 2007, Katsir et al. 2008                        |
| JAZ3                       | MYC2                   | Chini et al. 2007, Katsir et al. 2008                        |
| JAZ4                       | MYC2                   | Chini et al. 2007, Katsir et al. 2008                        |
| JAZ5                       | MYC2                   | Chini et al. 2007, Katsir et al. 2008                        |
| JAZ6                       | MYC2                   | Chini et al. 2007, Katsir et al. 2008                        |
| JAZ7                       | MYC2                   | Chini et al. 2007, Katsir et al. 2008                        |
| JAZ8                       | MYC2                   | Chini et al. 2007, Katsir et al. 2008                        |
| JAZ9                       | MYC2                   | Chini et al. 2007, Katsir et al. 2008                        |
| JAZ10/JAS1                 | MYC2                   | Chini et al. 2007, Katsir et al. 2008                        |
| JAZ11                      | MYC2                   | Chini et al. 2007, Katsir et al. 2008                        |
| JAZ12                      | MYC2                   | Chini et al. 2007, Katsir et al. 2008                        |
| MYC2                       | > JA responsive genes  | Devoto et al. 2002, Reymond et al. 2004 and Zhou et al. 2005 |
| MAPK6                      | MYC2                   | Takahasi et al. 2007                                         |
| JA responsive genes        | > JA                   | Farmer et al. 2010                                           |
| SA                         | > NPR1                 | Wu et al. 2012                                               |
| AP2C1                      | MAPK4 and 6            | Farmer et al. 2010                                           |
| MAPK4                      | > JA responsive genes  | Petersen et al., 2000                                        |
|                            |                        |                                                              |

> Activation, potentiation, stabilization, de-repression or other positive attribute

Inhibition, degradation, repression or a negative attribute

Regulatory proteins, Receptors, Degradation complexes, Transcription factors, Response Regulators are shown as green letters Pathogenic factors such as effectors are elicitors shown as red letters

Metabolic and phosphorylation enzymes are shown as black letters

Hormones are shown as blue letters

Phenotypes, metabolites, ions, genes during expression are shown as golden

Following are abbreviations and full names of all nodes presented in the network topology and Supplementary Table 1

|                   |                                  |                         | Indoleacetaldoxime                |
|-------------------|----------------------------------|-------------------------|-----------------------------------|
|                   | lasmonic acid responsive denes   |                         | debydrogenase                     |
| JA-les.genes      | jasmonic acid responsive genes   |                         |                                   |
| JAZ               | jasmonale Ziwi-domain            | IAN                     | indole-3-acetonithe nithase       |
|                   | a basic nelix-loop nelix         |                         |                                   |
| MYC2              | transcription factor             | IAO                     | Indole-3-acetaldehyde oxidase     |
|                   | jasmonate ZIM-domain             |                         |                                   |
| JAZ-deg. Comp.    | degrading complex                | ICO                     | IBA-CoA oxidase                   |
| FLS2              | flagellin sensitive 2            | Aux                     | Auxin                             |
| -                 | - 3                              | -                       | Hydroxy 3-methylglutaryl Co-A     |
| Auxin             |                                  | HMS                     | synthese                          |
| Auxin             |                                  | TIMO                    | Hydroxy 2 mothylalutoryl Co A     |
|                   |                                  |                         | Hydroxy 3-methylgiutaryi CO-A     |
| NADPH-Oxi         | NADPH-Oxidase                    | HMR                     | synthase                          |
| NPR1              | non-expressor of PR1             | MNK                     | Melvonate kinase                  |
|                   |                                  |                         | Melvonate Diphosphate             |
| СКХ               | cvtokinin Oxidase                | MDD                     | decarboxvlase                     |
|                   | .,                               |                         | Iso-pentenvl Diphosphate          |
| TIP1              | transport inhibitor response1    | וחו                     | isomerase                         |
| DOD               |                                  |                         |                                   |
| RUS               | reactive oxygen species          | DPS                     | Dipnosphate synthase              |
| ABA               | abscisic acid                    | PES                     | Phytoene synthase                 |
| JA                | jasmonic acid                    | PED                     | Phytoene desaturase               |
| MKS1              | MAP Kinase substrate 1           | CED                     | Carotene desaturase               |
| Callose           |                                  | LBC                     | Lycopene Beta cyclase             |
| Della-Prot        | Della-Protein                    | BRH                     | Beta ring hydroxylase             |
| MARK              | Mitogon activated protein kinase |                         | Anthoravinthin doppovidaço        |
|                   | Olute as device                  | 750                     |                                   |
| GRX480            | Glutaredoxin                     | ZEU                     | Zeaxanthin epoxidase              |
| PAD4              | Phytoalexin deficient 4          | AED                     | Antheraxanthin epoxidase          |
| Resistance        |                                  | Xanthoxin dehydrogenase |                                   |
| WRKY22            |                                  | AAO                     | Abscisic acid aldehyde oxidase    |
|                   | transcription factors with W-box |                         |                                   |
| WRKY70 and WRKY62 | binding domain                   | ABA                     | Abscicic acid                     |
| miP303            | microRNA 393                     | AGT                     | Abscisic acid alvcosvltransferase |
| CA                | adjovlja pojd                    |                         | Cutokinin trong bydroxylogo       |
| SA DD1            | salicylic aciu                   |                         | Cytokinin trans-nyuroxylase       |
| PR1               | pathogenesis related protein     | IPI                     | Isopentenyl transferase           |
| Stom.Clos.        | stomata closure                  | CK                      | Cytokinin                         |
|                   | TGACG motif binding [TGA]        |                         |                                   |
| TGA-TF            | transcription factors            | ICS                     | Isocharismate synthase            |
| Aux/IAA           | Auxin/Indole-3 acetic acid       | PAL                     | Phenylalanine amonia lavase       |
|                   |                                  |                         | 3-Deoxy 7-phosphohentulonate      |
| ст                | othylopo                         | 200                     | synthese                          |
|                   | eurylene                         | DF3                     | 2 Dheanhachiltimate 1             |
|                   | A                                | 5.07                    | 3-Phosphosnikimate 1-             |
| AIK               | Aspartate kinase                 | PCI                     | carboxyvinyl tranferase           |
|                   | Aspartate semialdehyde           |                         |                                   |
| ASD               | dehydrogenase                    | PSP                     | Phospholipase                     |
| HSD               | homoserine dehydrogenase         | LOX                     | Lipooxygenase                     |
| HSK               | homoserine kinase                | AOS                     | Allene oxide synthase             |
| CTI               | cystathionine beta-lyase         | AOC                     |                                   |
| MTS               | Mothionino synthaso              | OPP                     | Overbytedienpate reductase        |
| 1011 5            |                                  | OFR                     | Oxophytodienpate reductase        |
|                   | Homocysteine                     |                         |                                   |
| HMT               | Smethyltransferase               | JA                      | Jasmonic Acid                     |
|                   | 1-Aminocyclopropane 1-           |                         |                                   |
| ACS               | carboxylate synthase             | EDS                     | ent-copalyl diphosphate synthase  |
| МАТ               | Methionine adenosyltransferase   | EKS                     | ent-kaurene synthase              |
|                   | CYP79B3 tryptophan               |                         |                                   |
| TMO               | managawaganaga                   | EKO                     | antkourona avidaga                |
|                   |                                  |                         |                                   |
|                   | iryplamine monooxygenase         | EUU                     | eni-kaurenoate oxidase            |
| RPT               | tRNA isopentenyl transferase     | G20O                    | gibberellin 20-oxidase            |
|                   | respiratory burst oxidase        |                         |                                   |
| RbohD             | homolog D                        | G3O                     | gibberellin 3-oxidase             |

| ID          | P.Value  | t- values<br>SA | t-values<br>JA | t-values<br>CK | Gene.symbol             | logFC<br>SA | logFC<br>CK | logFC<br>JA | Annotation                                                                                                            |
|-------------|----------|-----------------|----------------|----------------|-------------------------|-------------|-------------|-------------|-----------------------------------------------------------------------------------------------------------------------|
| 259495_at   | 9,61E-02 | 1,955           | -0,376         | 0,255          | AT1G15890               | 0,430       | 1,320       | 1,320       | disease resistance protein (CC-NBS-LRR class), putative                                                               |
| 249264_s_at | 2,22E-03 | 4,959           | 0,505          | 0,358          | AT5G41750/<br>AT5G41740 | 1,388       | 2,540       | 2,540       | disease resistance protein (TIR-NBS-LRR class), putative/<br>disease resistance protein (TIR-NBS-LRR class), putative |
| 249561_at   | 4,15E-02 | 2,552           | -0,069         | 0,369          | AT5G38340               | 0,277       | 0,798       | 0,798       | disease resistance protein (TIR-NBS-LRR class), putative                                                              |
| 245233_at   | 2,65E-01 | 1,222           | -5,355         | 0,499          | AT4G25580               | 0,125       | 0,664       | 0,664       | stress-responsive protein-related                                                                                     |
| 248974_at   | 2,19E-02 | 3,025           | 0,225          | 0,773          | AT5G45060               | 0,555       | 1,610       | 1,610       | disease resistance protein (TIR-NBS-LRR class), putative                                                              |
| 248875_at   | 3,55E-02 | 2,666           | -2,828         | 0,808          | AT5G46470               | 0,517       | 3,090       | 3,090       | disease resistance protein (TIR-NBS-LRR class), putative                                                              |
| 259925_at   | 2,83E-01 | 1,174           | -1,208         | 0,836          | PR5                     | 0,654       | 9,060       | 9,060       | PR5 (PATHOGENESIS-RELATED GENE 5)                                                                                     |
| 266385_at   | 9,25E-03 | 3,699           | -3,559         | 0,916          | PR1                     | 3,019       | 72,800      | 72,800      | PR1 (PATHOGENESIS-RELATED GENE 1)                                                                                     |
| 265588_at   | 2,24E-02 | 3,005           | -2,755         | 1,051          | AT2G19970               | 0,599       | 1,990       | 1,990       | pathogenesis-related protein, putative                                                                                |
| 248847_at   | 1,15E-01 | 1,829           | 0,187          | 1,324          | AT5G46510               | 0,696       | 3,500       | 3,500       | disease resistance protein (TIR-NBS-LRR class), putative                                                              |
| 248943_s_at | 5,42E-03 | 4,147           | -0,273         | 1,571          | AT5G45490/<br>AT5G45440 | 1,213       | 7,630       | 7,630       | disease resistance protein-related/<br>disease resistance protein-related                                             |
| 252684_at   | 5,49E-03 | 4,135           | -0,310         | 1,681          | AT3G44400               | 1,511       | 3,760       | 3,760       | disease resistance protein (TIR-NBS-LRR class), putative                                                              |
| 265586_at   | 3,64E-01 | 0,977           | -2,736         | 2,031          | PR-1-LIKE               | 0,147       | 8,450       | 8,450       | PR-1-LIKE (PATHOGENESIS-RELATED<br>PROTEIN-1-LIKE)                                                                    |
| 259443_at   | 1,11E-02 | 3,549           | -0,099         | 2,086          | AT1G02360               | 1,380       | 8,800       | 8,800       | chitinase, putative                                                                                                   |
| 261914_at   | 1,71E-01 | 1,546           | -3,332         | 2,557          | AT1G65870               | 0,461       | 14,700      | 14,700      | disease resistance-responsive family protein                                                                          |
| 256781_at   | 4,08E-01 | 0,885           | -0,744         | 5,422          | AT3G13650               | 0,398       | 26,800      | 26,800      | disease resistance response                                                                                           |
| 266333_at   | 2,23E-01 | -1,352          | 2,340          | -1,352         | AXL                     | -0,127      | -0,127      | -0,127      | AXL (AXR1-LIKE); binding / catalytic                                                                                  |
| 261713_at   | 9,50E-02 | -1,963          | 10,474         | -2,818         | MYC2                    | -0,676      | -<br>20,200 | -<br>20,200 | MYC2; DNA binding / transcription activator/<br>transcription factor                                                  |
| 247025_at   | 6,75E-01 | -0,440          | 1,946          | -0,048         | ABA1                    | -0,120      | -2,680      | -2,680      | ABA1 (ABA DEFICIENT 1); zeaxanthin epoxidase                                                                          |
| 246432_at   | 2,00E-01 | -1,432          | 7,409          | -1,229         | RGL3                    | -0,159      | -2,300      | -2,300      | RGL3 (RGA-LIKE PROTEIN 3); transcription factor                                                                       |
| 247549_at   | 0,00133  | -6,503          | -1,116         | -6,503         | MYB28                   | -145,0      | -145,0      | -145,0      | MYB28 (myb domain protein 28); DNA binding /<br>transcription factor                                                  |

**Supplemental Table 2:** Expression analysis (multiple comparisons) on the Impact of SA, JA and CK signaling on immunity in *Arabidopsis*.<sup>1</sup>

 $^{1}$ GEO experiments as given in legend to Figure 1C; significant differences from network analysis are shown in Figure 1C. p-values = individual level of significance for gene expression comparison from described GEO experiment, t-values = difference in mean of gene expression between wild type and treated plants, logFC= log fold changes, again according to the GEO experiment.