

Supplemental Figure 1: Conventional and atypical disease scores for WT and IFNyRKO recipients of Th1-polarized MOG-primed CD4 T cells. WT n=14, IFNyRKO n=29.

Supplemental Figure 2 : Gating schemes for identifying myeloid and lymphoid cell subsets in CNS tissue. (a) Flow cytometry gating scheme for identifying donor CD4⁺ T cell populations as B220⁻CD3⁺CD4⁺CD45.1⁺ cells. (b) Myeloid cells (CD11b⁺) were separated into microglia (CD45^{int}Ly6G⁻), monocytes (CD45^{int}Ly6G⁻), and neutrophils (CD45⁺Ly6G⁺). MHCII and Ly6C expression were used to confirm phenotypes of microglia, monocytes and neutrophils.

Supplemental figure 3: MOG_{35-55} -primed, IL-12 polarized CD4 T cells were stimulated with PMA and ionomycin prior to intracellular staining and flow cytometric analysis. Histograms are gated on CD4⁺CD44⁺ T cells.

Supplemental Figure 4: Administration of CXCR2 antisera inhibits neutrophil accumulation in the spinal cord and brainstem in WT mice with EAE. Flow cytometric analysis of the spinal cord and brainstem isolated from score-matched mice d9 post-CD4⁺ T cell transfer to examine neutrophil

infiltration.