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Note S1

Lemma 1.1 Suppose f : Rn → R is a real valued function with n parameters x1, . . . , xn. Consider
the optimization problems 

x̂ = argmax
x

f(x1, . . . , xn)

subject to 0 ≤ xi,
∑
i

xi < 1
(S1)

and 
v̂ = argmax

v
f

(
v1

1 +
∑
i

vi
, . . . ,

vn

1 +
∑
i

vi

)

subject to 0 ≤ vi

. (S2)

There is a one-to-one mapping between their solutions:

x̂i =
v̂i

1 +
∑
i

v̂i
, 1 ≤ i ≤ n. (S3)

Proof First, notice that the mapping (S3) is one-to-one, since

v̂i =
x̂i

1−
∑

x̂i
, 1 ≤ i ≤ n.

Second, notice that v̂i
1+

∑
i v̂i

is in the feasible set of (S1), since v̂i
1+

∑
i v̂i

> 0 and
∑n

i=1
v̂i

1+
∑

i v̂i
< 1

for v̂i ≥ 0. The result follows directly.

Note S2

Note that from Equation 2 we have:

∂πi,j
∂Pc,j

=
∂(1

2Zi · P j)
∂Pc,j

=
1

2
Zi,c.
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In what follows, Φ : RC×M → R is a multivariable function of P defined in Equation 9. Also, for
any fixed 1 ≤ j ≤ m, Pc,j : RC−1 → R is a function of (V2,j , . . . , VC,j) as defined in Equation S15.
Because Pc,j′ does not depend on Vc,j if j′ 6= j, the partial derivative ∂Φ

∂Vc,j
depends only on Pc′,j

for 1 < c′ ≤ C. We have:

∂Φ

∂Vc,j
=

C∑
c′=2

(
∂Φ

∂Pc′,j
·
∂Pc′,j
∂Vc,j

)

=
C∑
c′=2

((
N∑
i=1

∂Φ

∂πi,j
· ∂πi,j
∂Pc′,j

)
·
∂Pc′,j
∂Vc,j

)

=
1

2

∑
c′


∑

i,z

(
qZ,i

(
Xi,j

πi,j
− Ri,j −Xi,j

1− πi,j

)
Zi,c′

) · ∂

∂Vc,j

 Vc′,j

1 +
∑
1<c′′

Vc′′,j




=
∑
c′


∑

i,z

(
qZ,i

Zi,c′

(
Xi,j

πi,j
− Ri,j −Xi,j

1− πi,j

)) · (1 +
∑
1<c′′

Vc′′,j)11c(c
′)− Vc′,j

2(1 +
∑
1<c′′

Vc′′,j)2


where πi,j = 1

2Zi · P j , and the identity function 11c(c
′) = 1 if c′ = c, and it is zero otherwise.

Note S3

To estimate the probability of obtaining a random genotype matrix that corresponds to a valid
phylogenetic tree, we randomly generated one million such matrices, independently setting each bit
to 1 or 0 by a fair coin flip. We then asked whether, for each matrix, it is possible to generate a
corresponding phylogenetic tree. This is the case if, for each pair of rows in the genotype matrix,
the bitwise “AND” of the rows either (1) consists of all zeroes, or (2) is equal to one of the rows.
Out of one million 17 × 3 matrices, 2.2% were phylogenetically consistent. The corresponding
percentages for 17× 4 and 17× 5 matrices were 0.0097% and 0.0001%.

Note S4

The complete-data log likelihood, which was defined in Equation 4 in the main text, can be com-
puted as follows. Because loci are independent of each other, we can write L as the sum of the
log likelihood associated with each locus. Then

L = log Pr(X,Z|θ)
=

∑
1≤i≤N

log Pr(Xi,Zi|θ)

=
∑

1≤i≤N
log
(

Pr(Xi|Zi, θ) Pr(Zi|θ)
)

(S4)

=
∑

1≤i≤N
log
(

Pr(Xi|Zi, µi, P ) Pr(Zi|µi, P )
)

(S5)

=
∑

1≤i≤N

(
log
(

Pr(Xi|Zi, µi, P )
)

+ log
(

Pr(Zi|µi, P )
))

. (S6)
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Equations S4 and S5 are obtained by conditional probability and the definition of θ, respec-
tively. Note that conditioned on µi, the random variable Zi is independent from P ; therefore,
Pr(Zi|µi, P ) = Pr(Zi|µi). Similarly, Pr(Xi|Zi, µi, P ) = Pr(Xi|Zi, P ). Then

L =
∑
i

log Pr(Xi|Zi, P )︸ ︷︷ ︸
LX

+
∑
i

log Pr(Zi|µi)︸ ︷︷ ︸
LZ

. (S7)

We compute each of the two terms in Equation S7 separately, starting with the second term,
LZ , which is simpler to compute. Recalling that each entry Zi,c is an independent Bernoulli random
variable with parameter µi,c, we have

LZ =
∑

1≤i≤N
log Pr(Zi|µi)

=
∑

1≤i≤N
log

 ∏
1≤c≤C

Pr(Zi,c|µi,c)


=

∑
i,c

log
(
(µi,c)

Zi,c(1− µi,c)1−Zi,c
)

(S8)

=
∑
i,c

(Zi,c log(µi,c) + (1− Zi,c) log(1− µi,c)) . (S9)

To compute LX , we use the assumption of independence between subsections to get

LX =
∑
i

log Pr(Xi|Zi, P )

=
∑

1≤i≤N
log

 ∏
1≤j≤M

Pr(Xi,j |Zi, P j)


=

∑
i,j

log Pr(Xi,j |Zi, P j).

Note that conditioned on Z and P , for any locus i and subsection j, Xi,j is a binomial random
variable with parameters Ri,j and πi,j = 1

2Zi · P j (Equations 2 and 3). Also, the total number of
reads, Ri,j , is known from the experiment. Therefore, we have

LX =
∑
i,j

log Pr(Xi,j |Zi, P j)

=
∑
i,j

(
log

(
Ri,j
Xi,j

)
+ Xi,j log(πi,j) + (Ri,j −Xi,j) log(1− πi,j)

)
. (S10)

Finally, substituting Equations S9 and S10 into Equation S7 yields the following formula for
the complete-data log likelihood:

L = LX + LZ

=
∑
i,j

(
log

(
Ri,j
Xi,j

)
+ Xi,j log(πi,j) + (Ri,j −Xi,j) log(1− πi,j)

)
+
∑
i,c

(Zi,c log(µi,c) + (1− Zi,c) log(1− µi,c)) ,

where πi,j = 1
2Zi · P j .
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Note S5

P new is the solution of the following constrained optimization problem:
P new := argmax

P
Φ(P )

such that ∀j, c : 0 ≤ Pc,j and ∀j :

C∑
c=1

Pc,j = 1.
(S11)

To simplify Φ(P ), we let qZ,i
be the the posterior probability for locus i, defined as

qZ,i
:= Pr(Zi|Xi, θ

old). (S12)

By substituting binomial distributions from Equation 8, we get:

Φ(P ) = EZ|X,θold [log Pr(X|Z, P )]

= EZ|X,θold

[∑
i

log Pr(Xi|Zi, P )

]

=
N∑
i=1

EZi|Xi,θold [log Pr(Xi|Zi, P )]

=

N∑
i=1

∑
z∈{0,1}C

(
qZ,i

log Pr(Xi|Zi = z, P )
)

=

i=N,j=M∑
i=1,j=1
z∈{0,1}C

(
qZ,i

(
log

(
Ri,j
Xi,j

)
+ Xi,j log(πi,j) + (Ri,j −Xi,j) log(1− πi,j)

))
(S13)

where πi,j = 1
2Zi · P j .

We point out several facts that help in maximizing Φ(P ):

• All terms other than π in Equation S13 are fixed. In particular, qZ,i
is known because it is a

function of θold.

• Because Equation S13 is a summation over the values of j from 1 to M , and the samples are
assumed to be independent, maximization can be done by solving M independent problems.

• Because the first column of Z corresponds to normal contamination, Zi,1 = 0 for the ith

locus. This means that πi,j and therefore Φ are constant with respect to P 1, the first column
of P . However, since we have assumed that each column of P sums to 1, there is a simple
relationship between P1,j and P2,j , . . . , PC,j :

P1,j = 1−
∑
1<c

Pc,j .

• Recall that we assumed P1,j > 0 due to contamination with normal cells in each subsection.
So for 1 ≤ j ≤M , the optimization problem (S11) can be written in this form:
P j

new
:= argmax

P j

N∑
i=1

∑
z∈{0,1}C

(
qZ,i

(
log

((
Ri,j
Xi,j

))
+ Xi,j log(

1

2
Zi · P j) + (Ri,j −Xi,j) log(1− 1

2
Zi · P j)

))
such that ∀j, 1 < c : 0 ≤ Pc,j and ∀j :

∑
1<c

Pc,j < 1.

(S14)
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We use Lemma 1.1 in Note S1 to solve Equation S14 by a change of variables,

Pc,j :=
Vc,j

1 +
∑

1<c′≤C
Vc′,j

, 1 ≤ j ≤M, 1 < c ≤ C, (S15)

which eliminates the need for the constraint
∑
1<c

Pc,j < 1 provided that Vc,j ≥ 0. For simplicity

of notation, we set V1,j = 0 so that VC×M has the same dimension as PC×M . The choice of 0 is
arbitrary because V1,j has no role in Equation S15.
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Figure S 1: Clone frequencies vary smoothly across adjacent subsections. Each panel
displays, for a different section, the pattern of inferred clone frequencies across subsections. Each bar
plot shows the relative frequencies of tumor clones in the corresponding subsection after accounting
for normal contamination. Clones are numbered as in Figure 4, and the normal clone, C0, is not
shown. Panels A–D show the C=5 solution, and panels E–H show the C=6 solution.
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Figure S 2: Copy number variation across samples. Each panel shows, for a specified primary
tumor subsection, the relative normalized coverage observed per 1 Mbp window (i.e., the ratio of
counts in the window over the total counts from a tumor subsection, divided by the corresponding
ratio for the normal sample). The 17 loci analyzed in this study are indicated with colored dots.
Note that the dot for locus chr17a is occluded by the dot for the adjacent locus chr17b. The color
scheme here is the same as in Figure 6 The 17 loci analyzed in this study are indicated with colored
dots using the color scheme from Figure 6. Note that the dot for locus chr17a is occluded by the
dot for the adjacent locus chr17b.
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Figure S 3: BIC analysis. (A) Each panel plots the average BIC over 100 simulated data sets
(y-axis) as a function of the hyperparameter C, the assumed number of clones (x-axis). Similar to
Figure 2, the true number of clones for each panel is shown by colors in the legend. In each case,
the minimum average BIC is achieved at the true clone number. (B) Adding sequencing noise with
rate 1% to the simulated data does not affect the performance of BIC. (C) BIC values are shown
for models trained on our real breast cancer data. While the BIC exhibits a large decrease (45%)
when C increases from 3 to 4, the subsequent improvements of the BIC are smaller: 29%, 20%,
9%, and 3%, respectively, as C grows from 4 to 8.
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Figure S 4: Computational time. The average time for EM training to converge on the breast
cancer data (y-axis) is plotted as a function of the hyperparameter C, the assumed number of clones
(x-axis). The y-axis is on a log10 scale, and the red line is a linear fit which shows that the training
time grows exponentially with C. Each training task was obtained using a 2.40GHz processor with
2 GB memory. Values are averaged over 100 EM runs, trained from different random initializations.
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Figure S 5: Improving likelihood by multiple initializations. The figure plots, for different
values of C, the best log likelihood obtained as a function of the number of EM runs. Specifically,
for any k number of EM instances (x-axis), the normalized log-likelihood (y-axis) was obtained
by dividing the best log-likelihood of k models by absolute value of the maximum observed log-
likelihood. The reported value is the median over 1000 random orderings of a fixed set of 100,000
likelihoods. The curve corresponding to 3 clones is covered by the 4-clones curve because they both
reach their optimum likelihood using a relatively small (< 1000) number of initializations.
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Figure S 6: The effect of sequencing noise on the performance of Clomial. The figure
plots the mean (A) genotype error eZ and (B) clone frequency error eP as a function of sequencing
error rate. The experiments were run as described in Figure 2 using 10 simulated subsections, and
the sequencing error rate is the probability that a non-tumor allele is read as tumor allele or vica
versa. (A) The genotype error is not affected by sequencing noise less than 0.02. (B) The change
in frequency error is negligible when the noise is less than 0.01. The green vertical lines correspond
to a sequencing error rate of 0.0015, which is the estimated empirical error rate from our deep
sequencing experiment, estimated by averaging the frequency of the tumor alleles in the normal
subsections (Figure 4).
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Primary tumor Metastasis Normal
P1-1 P1-2 P1-3 P1-4 P2-1 P2-2 P2-3 P2-4 P3-1 P3-2 M1-1 M1-2 N1-1

chr1 416 519 358 202 286 340 490 256 188 366 1 0 4
chr3a 73 969 696 517 546 621 903 471 13 596 0 0 1
chr3b 0 0 1 1 0 0 0 0 0 0 228 230 0
chr3c 0 0 1 0 2 2 0 0 2 0 122 179 2
chr4a 144 294 163 148 173 229 341 173 96 197 112 169 6
chr4b 665 962 619 321 508 531 863 391 310 541 6 2 3
chr5 251 328 209 118 175 194 329 181 100 203 1 0 2
chr6 0 0 0 0 0 0 0 0 0 0 461 479 0
chr9a 571 755 419 265 485 518 851 483 337 495 2 0 6
chr9b 604 958 500 364 583 718 1101 566 338 691 541 1120 3
chr12 1246 2024 1213 618 1196 1252 2297 1109 752 1438 2 3 27
chr16 1341 1883 1007 596 820 1086 1591 1018 495 1046 6 1 11
chr17a 0 2 0 1 0 0 0 0 0 0 217 0 1
chr17b 713 900 592 358 440 612 841 421 314 621 2 0 7
chr17c 172 240 3 1 21 21 128 134 114 87 2 0 2
chr20a 0 0 0 0 0 0 2 0 0 0 322 401 3
chr20b 609 933 624 304 628 627 967 550 320 563 2 2 2
chr1 2144 2898 2382 2627 2108 2281 2844 2193 2290 2165 3107 2447 2791
chr3a 2981 4085 3217 3475 2747 2868 3479 2654 2901 2540 3981 2900 3080
chr3b 1659 2005 1478 1883 1280 1520 1559 1279 1511 1199 1772 1384 1390
chr3c 2813 3535 3016 3439 2865 3071 3534 2764 2865 2598 3645 2740 3255
chr4a 646 1120 894 870 1073 1166 1293 1157 1040 911 930 1075 1304
chr4b 3745 5438 4420 4591 4009 4021 4980 4042 4109 3688 5438 4592 4802
chr5 1035 1396 1100 1157 844 965 1407 1105 944 965 1438 1301 1233
chr6 2498 3056 2515 2713 2201 2494 3154 2557 2517 2445 3595 3302 2627
chr9a 2197 2874 2131 2358 2643 2477 3194 3033 2686 2220 2670 2750 2826
chr9b 2121 3591 2356 2445 2912 2828 3953 3293 2753 2697 3490 3791 3194
chr12 3758 6235 4701 4520 5834 5332 7200 5409 5343 5201 5435 5413 6007
chr16 3141 4245 3248 3188 2844 2979 3826 3044 2606 2978 3406 2729 3070
chr17a 3136 4169 3774 4474 3430 3408 4431 3726 3880 3113 5066 3941 5200
chr17b 1934 2560 2320 2794 2034 2150 2513 2134 2500 2077 2855 2387 2831
chr17c 1432 2271 2209 2061 2247 2204 2705 2013 2130 1975 2930 2617 2670
chr20a 2295 3479 2536 2680 2703 2628 3611 3035 2739 2623 4010 4039 3318
chr20b 2371 3828 2943 2684 3367 3175 4151 3374 3154 2856 4126 4413 3876

Table S 1: Allele counts. The table lists the number of observed tumor allele reads (top) and
total number of reads (bottom) per locus, for all 17 loci. These two matrices constitute the entire
input to the EM estimation procedure.
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Inferred M1 M2 M3 M4 M5 M6

C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3

chr4a 1 0 1 0∗ 0 1 1 1∗ 1 1 0 0∗ 1 0 1 1 0 1 1 0 1
chr9b 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
chr1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
chr4b 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
chr12 1 1 0 1 1 0 1 1 0 1 1 0 0∗ 1 0 1 0∗ 0 1 1 1∗

chr16 1 1 0 1 1 0 1 1 0 1 1 0 0∗ 1 0 1 0∗ 0 1 1 1∗

chr17b 1 1 0 1 1 0 1 1 0 1 1 0 0∗ 1 0 1 0∗ 0 1 1 1∗

chr5 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
chr9a 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
chr20b 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
chr3a 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
chr17c 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
chr3c 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
chr17a 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
chr20a 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
chr3b 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
chr6 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1

log-likelihood -4,244 -21,282 -4,333 -5,659 -28,482 -7,500 -6,692

Table S 2: Modified genotypes and the corresponding likelihoods. Genotype for C=4
after any of the above modifications is done. The inferred genotype, and all of the six possible
modifications are shown, where each asterisk indicates a flipped bit. The associated log-likelihoods
are reported. The phylogeny tree presented in Figure 6C was made based on modification M2

which had the highest likelihood.
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Clomial Manual PhyloSub
C1 C2∗ C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

BCL2L13 1 0∗ 1 1 1 1 1 1 1 1 1 1
COL24A1 0 1 0 0 0 1 0 0 0 1 0 0
DAZAP1 0 0 1 1 0 0 1 1 0 0 1 1
EXOC6B 0 0 1 1 0 0 1 1 0 0 1 1
GHDC 0 0 1 1 0 0 1 1 0 0 1 1
GPR158 1 0∗ 1 1 1 1 1 1 1 1 1 1
HMCN1 0 1 0 0 0 1 0 0 0 1 0 0
KLHDC2 0 1 0 0 0 1 0 0 0 1 0 0
LRRC16A 0 0 0 1 0 0 0 1 0 0 0 1
MAP2K1 0 1 0 0 0 1 0 0 0 1 0 0
NAMPTL 1 0∗ 1 1 1 1 1 1 1 1 1 1
NOD1 0 1 0 0 0 1 0 0 0 1 0 0
OCA2 0 0 1 1 0 0 1 1 0 0 1 1
PLA2G16 0 0 1 1 0 0 1 1 0 0 1 1
SAMHD1 1 1 1 1 1 1 1 1 1 1 1 1
SLC12A1 1 0∗ 1 1 1 1 1 1 1 1 1 1

a b c d e

Clomial

C0 0.00 0.00 0.00 0.00 0.00
C1 0.27 0.18 0.16 0.23 0.43
C2∗ 0.01 0.03 0.04 0.12 0.34
C3 0.39 0.27 0.30 0.26 0.13
C4 0.33 0.52 0.50 0.39 0.10

Manual

C0 0.08 0.03 0.00 0.04 0.38
C1 0.20 0.15 0.16 0.17 0.08
C2 0.00 0.03 0.04 0.14 0.31
C3 0.39 0.27 0.30 0.26 0.13
C4 0.33 0.52 0.50 0.39 0.10

PhyloSub

C0 0.09 0.03 0.01 0.04 0.40
C1 0.15 0.17 0.17 0.17 0.04
C2 0.00 0.03 0.03 0.13 0.32
C3 0.39 0.19 0.33 0.28 0.16
C4 0.37 0.58 0.46 0.38 0.08

Table S 3: Comparing different methods on the CLL077 data set. The top table lists, for
each of the 16 loci of CLL077, the clonal genotypes inferred by Clomial, manual analysis carried
out by Shuh et al. [1], and PhyloSub. In each case, the normal clone (C0) is omitted because
its genotype consists entirely of zeroes. Any bit predicted not the same as the manual analysis is
marked by an asterisk in the genotypes matrices. The corresponding inferred clonal frequencies
are listed in the bottom table, where each block shows a matrix P derived by one of the three
methods and C0 denotes the normal clone. Frequencies that differ by more than 0.1 from the
manual estimates are in bold. All three methods predict the same genotypes for clones C1, C3,
and C4. Unlike manual analysis and PhyloSub, Clomial does not consider C2∗ to be a subclone of
C1. Instead, it identifies C2∗ by a set of mutations which are present mostly in sample e, the most
recent one (data not shown). The frequencies from all the three methods are generally close.
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Clomial Manual PhyloSub
C1 C2 C3∗ C4∗ C1 C2 C3 C4 C1 C2 C3 C4

ADAD1 1 1 1 1 1 1 1 1 1 1 1 1
AMTN 0 1 0 1∗ 0 1 0 0 0 1 0 0
APBB2 0 1 0 1∗ 0 1 0 0 0 1 0 0
ASXL1 1 0 0 1∗ 1 0 0 1 1 0 0 1
ATM 0 1 1∗ 1∗ 0 1 0 0 0 1 0 0
BPIL2 0 1 0 1∗ 0 1 0 0 0 1 0 0
CHRNB2 1 0 0 0 1 0 0 0 1 0 0 0
CHTF8 1 1 1 1 1 1 1 1 1 1 1 1
FAT3 1 0 0 0 1 0 0 0 1 0 0 0
HERC2 1 1 1 1 1 1 1 1 1 1 1 1
IL11RA 1 1 0∗ 1 1 1 1 1 1 1 1 1
MTUS1 0 1 0 1∗ 0 1 0 0 0 1 0 0
MUSK 1 0 0 1 1 0 0 1 1 0 0 1
NPY 1 0 0 0 1 0 0 0 1 0 0 0
NRG3 1 0 0 0 1 0 0 0 1 0 0 0
PLEKHG5 0 1 0 1∗ 0 1 0 0 0 1 0 0
SEMA3E 1 0 0 1∗ 1 0 0 1 1 0 0 1
SF3B1 1 1 1 1 1 1 1 1 1 1 1 1
SHROOM1 1 1 1 1 1 1 1 1 1 1 1 1
SPTAN1 0 1 0 1∗ 0 1 0 0 0 1 0 0

a b c d e

Clomial

C0 0.00 0.00 0.35 0.09 0.03
C1 0.00 0.01 0.46 0.91 0.96
C2 0.72 0.84 0.01 0.00 0.00
C3∗ 0.18 0.08 0.06 0.00 0.00
C4∗ 0.10 0.07 0.12 0.01 0.01

Manual

C0 0.06 0.02 0.30 0.06 0.02
C1 0.00 0.01 0.44 0.89 0.96
C2 0.82 0.91 0.13 0.00 0.00
C3 0.03 0.00 0.00 0.00 0.00
C4 0.09 0.06 0.13 0.05 0.03

PhyloSub

C0 0.08 0.00 0.36 0.08 0.01
C1 0.00 0.00 0.43 0.92 0.99
C2 0.79 0.86 0.11 0.00 0.00
C3 0.00 0.07 0.00 0.00 0.01
C4 0.13 0.07 0.10 0.00 -0.01

Table S 4: Comparing different methods on the CLL003 data set. The tables lists, for each
of the 20 loci of CLL003, the clonal genotypes inferred by Clomial, manual analysis, and PhyloSub,
using notation similar to Table S3. All three methods agree on the genotypes of the dominant
clones C1 and C2, which have relatively high frequencies. Also, the corresponding frequencies for
these clones, and also the normal clone, are similar between the three inference methods. However,
Clomial does not agree with the manual analysis on the genotypes of C3∗ and C4∗. PhyloSub
incorrectly predicts a negative frequency for clone C4 in sample e.
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Clomial Manual PhyloSub
C1 C2 C3 C4∗ C1 C2 C3 C4 C5 C1 C2 C3∗ C4 C5 C6∗

ARHGAP29 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
EGFR 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
IRF4 0∗ 0 0 1 1 0 0 0 1 1 0 0 0 1 0
KIAA0182 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
KIAA0319L 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0
KLHL4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
MED12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PILRB 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RBPJ 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0
SIK1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
U2AF1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 0

a b c d e

Clomial

C0 0.00 0.00 0.00 0.00 0.00
C1 0.03 0.09 0.03 0.13 0.12
C2 0.36 0.31 0.36 0.22 0.13
C3 0.32 0.09 0.30 0.06 0.09
C4∗ 0.30 0.52 0.31 0.58 0.66

Manual

C0 0.00 0.00 0.00 0.00 0.00
C1 0.02 0.09 0.03 0.13 0.13
C2 0.31 0.31 0.32 0.22 0.17
C3 0.32 0.09 0.30 0.06 0.09
C4 0.11 0.08 0.11 0.15 0.04
C5 0.24 0.43 0.24 0.44 0.57

PhyloSub

C0 0.00 0.00 0.00 0.00 0.00
C1 0.02 0.08 0.03 0.14 0.13
C2 0.33 0.37 0.36 0.22 0.16
C3∗ 0.23 0.05 0.20 0.04 0.05
C4 0.13 0.03 0.08 0.17 0.05
C5 0.23 0.45 0.26 0.41 0.56
C6∗ 0.06 0.02 0.07 0.02 0.05

Table S 5: Comparing different methods on the CLL006 data set. The tables lists, for each
of the 11 loci of CLL006, the clonal genotypes inferred by Clomial, manual analysis, and PhyloSub,
using notation similar to Table S3. All three methods predict the same genotypes for clones C1, C2,
and C3, except mutation of IRF4 which is absent in C1 according to Clomial. The corresponding
frequencies are also very close, if we assume that PhyloSub splits C3 from the manual analysis to
C3∗ and C6∗. Given only five samples, Clomial can infer a maximum of five clones, including the
normal clone. Therefore, Clomial merges C4 and C5 from the manual analysis to C4∗, as is evident
from comparison of the corresponding genotypes and frequencies. All three methods agree that the
normal contamination in all samples is less than 1%.
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