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Experimental scheme for detecting the spatial distribution of backscattered light 

In order to determine the spatial distribution of time-resolved backscattered light from a turbid 

medium, we installed a line-field detection setup at the second detection port of BS3; the first port 

being used to acquire TRRM data (see Fig. S1(a)). Similar to the pinhole in Fig. 1, a slit S is placed in 

a plane that is conjugate to the sample plane for the line-field detection. The slit defines 1-dimensional 

detection line in the sample plane. The reference beam path is diverted using two folding mirrors 

(FM1 and FM2); a cylindrical lens CL is used for reference beam mode matching into the detection 

slit. The 1-D line shape of the combined sample and reference beams is converted into a 2-D 

distribution in the detection plane of the spectrometer that is composed of an imaging lens system and 

a grating G. The interference image is taken by a 2-D camera C3; a typical raw image is displayed in 

Fig. S1(b). This image is processed to retrieve a time-resolved line-field image, i.e., lateral scattered 

field distribution versus arrival time, as shown in Fig. S1(c).  

 



Enhanced amplitude and TRRM reconstruction 

By applying the complex amplitudes of all the phase ramps with their amplitudes assigned in Eq. (2) 

in the main text, we can obtain the amplitude of the reflected signal maximized at the arrival time j0t: 
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where )( 0 tjSopt  is the detected amplitude after the optimization, ),( 0 tjkr i 


the measured TRRM 

element for ith phase ramp and j0
th time bin, and N the total number of phase ramps used for the 

optimization. For the input wave given by Eq. (1) and Eq. (2) in the main text, which optimizes the 

intensity at arrival time of t0 = j0t, the complex field associated with backscattered wave at an 

arbitrary arrival time t = jt also can be calculated as 
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The green and red curves in Fig. 3 in the main text were obtained using the above equation.  

 We also experimentally investigate the enhanced amplitude at the target arrival time as a function of 

N. Figures S2(a)-(c) show the peak signal growth in Figs. 3(a)-(c), shown in the main text, with 

increasing N. The two theoretical expectations (green and red curves) of TRRM reconstruction 

steadily increase; they achieve good agreement with a curve taking the form N, with  about 0.5[1]. 

This finding conforms to the theoretical predictions. In our experiment the backscattered signal is 

enhanced fairly well up to N ~ 400 and is in excellent agreement with the theoretical TRRM 

reconstruction, especially when using phase-only control. Beyond N ~ 400, however, the experimental 

curve exhibits saturation due to the inability of the SLM to generate finer patterns. 

 

Detected signal (backscattered wave) vs. number of input channels  

To quantify the role of the number of input channels on detected signal enhancement, we start by 

measuring Sopt for a specific time bin j0t as a function of N, the number of input channels (phase 

ramps) used for the optimization. The result is shown as a log-log plot in Fig. S3. The optimized 

signal increases monotonically with the number of input phase ramps up to N ≦	 400. However, as N 



increases beyond 400, the tendency of signal growth deviates from the linear behavior; moreover, this 

discrepancy becomes larger with N. This is due to the lack of ability to display higher resolution phase 

maps on the SLM for larger values of N. In other words, as N increases the final optimized phase 

pattern becomes finer and more complicated. The pixelated structure of the SLM and its finite fill 

factor cause imperfection when writing such phase patterns on the SLM [2]. We, therefore, fit the data 

up to N = 400 with a line for predicting the role of number of input channels on reflected signal 

growth. As shown in Fig. S3, the data points are closely distributed near the fit line, yielding a slope 

of 0.47±0.01 that is quite close to the theoretical expectation value of 0.5. 

 

Reflection / transmission enhancement for various sample thickness 

To characterize enhancement in backscattered and forward scattered light using TRRM, we prepared 

several samples with various thicknesses but with the same transport mean free path. Specifically, we 

chose sample thicknesses L of 86.5, 158.2, 232.6, and 376.6 m that provided clL /2  as 0.44, 0.84, 

1.18 and 1.91, respectively. Here, cl  is the transport mean free path. We note that these samples 

cover weak to moderate turbidity regime. The data presented in the main text (Figs. 2-4) was obtained 

using the thickest sample mentioned above. In this supplemental document, we present additional 

information about energy enhancement in reflection and transmission case using samples of smaller 

thickness.  

 Similar to our approach mentioned in the main text, we set the target time bin such that the arrival 

time corresponds to the back surface of each sample and then perform the optimization procedure for 

the reflected wave that corresponds to the target arrival time. The line-field distribution of the 

reflected wave was measured before and after the optimization (Figs. 4 (b) and (d) in the main text). 

Next, the ratio of energy associated with the light from target arrival time was calculated. Moreover, 

the energy change in the light transmitted through the back surface was also measured. Figure S4 

summarizes our experimental observation of the relative energy enhancement in reflection and 

transmission cases for various sample thicknesses. For the thinnest sample used in the experiment 



( clL /2  = 0.44), the energy enhancement for the reflected light (with the target arrival time) and that 

for the transmitted light were measured to be 100% and 41%, respectively. As the sample thickness 

increases, the enhancement values decrease monotonically. For clL /2  = 1.91, the energy 

enhancement was measured as 41% and 20% for reflection and transmission cases, respectively. As 

mentioned in the main text, the correspondence between arrival time and the target depth is degraded 

with increasing clL /2 . Consequently, the ability to deliver energy to the target depth decreases with 

increasing sample thickness. 

 

Random matrix theory for double-transmission configuration 

In the main text, we observed that the optimization process increases both the energy of reflected light 

with a certain target arrival time and the total transmitted energy through the back surface of the 

turbid medium. Here we present a simple model for this rather counter-intuitive phenomenon using 

the random matrix theory (RMT). When a turbid medium is illuminated with incident light, in general, 

four waves are coupled to each other as shown in Fig. S5(a). This coupling can be described by the 

scattering matrix S as [3]: 
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where indices (a, b) denote each surface of the sample and the symbols (+,  represent waves 

propagating from left to right and vice versa. Considering only one incident beam 
aE  ( 

bE ), tba (tab) 

will represent the transmission matrix for the direction left  right (right  left) and raa (rbb) as the 

reflection matrix at the surface a (b). For a relatively weak turbid medium, the arrival time is related 

to the depth information of the sample to a large extent. So if we perform a time-resolved detection 

for reflected light, and we narrow down our focus only on a specific arrival time from within the 

turbid medium, then the majority of detected signal will be related to the reflected wave originating 

from the depth associated with the target arrival time. Figure S5 schematically represents this idea. As 

shown in Fig. S5(a), if we set the target arrival time t0 = 2nL/c, where L is the sample thickness, c is 



the speed of light in vacuum and n is the mean refractive index of the medium, then the light reflected 

from the back surface of the sample is taken into account preferentially. This reflected light undergoes 

the same medium twice such that the total propagation distance is 2L. We can consider this two-way 

single reflection geometry as one-way double transmission configuration (see Fig. S5(b)). In this 

model, the total thickness of the turbid medium remains 2L, and the microscopic distribution of 

scattering particles inside the medium shows mirror symmetry with respect to the central line of the 

medium. 

Now we can describe the reflection of light from the medium using the transmission matrix. In Fig. 

S5(a), if we set the transmission matrix of the medium from the left to the right side as tba, then the 

transmission matrix for the reverse direction will be given as tab. Correspondingly, the sequence of 

two transmissions in Fig. S5(b) will be described simply by these two matrices as: 

  .baabttT                                    (S4) 

The reflected light at the target depth can now be described by the modified transmission matrix.  

 Next, we numerically generate a full scattering matrix S for a disordered medium with certain turbidity. The 

matrix S is constructed with 2000 by 2000 elements such that its eigenvalue distribution satisfies the random 

matrix theory (RMT). From the submatrices of S, we calculate the double transmission matrix T given by Eq. 

(S4) and perform the single-channel optimization using T. This simulates our experimental situation where the 

light with a certain target arrival time is optimized in a moderately turbid medium. Therefore, the energy 

enhancement at port a after the optimization is calculated as: 
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where Eopt and E0 are incident light field with and without single-channel optimization. Note that this reflection 

enhancement corresponds only to the light with specific arrival time. We also calculate the enhancement in the 

transmitted energy (at port b) using the same input wave Eopt as: 
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In Figure S6, we have calculated the ratio of enhancement defined by  
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for a range of turbidity values including the ones used in our experiment. The data points are closely distributed 

to the value of 0.5 over the whole range of our calculation. This result indicates that the transmitted energy (or 

the energy delivered to a target depth) is enhanced by approximately half of that in reflection. Since the 

optimization is performed using the total matrix T for the reflection, the energy enhancement for the 

transmission is less effective. Our experimental data, depicted in the Fig. S6, is also in good agreement with the 

numerical curve. 

 Although we made a time-gated detection, we find that the RMT theory describing the steady-state 

interaction of light with a turbid medium can still be applied to interpret our experimental results. If 

the target arrival time t0 is set not too far beyond the reduced scattering time clnt c /rst  , the one-

way double-transmission configuration holds valid. However, when t0≫trst, the correspondence 

between arrival time and depth information is lost, thereby rendering the double-pass transmission 

model inappropriate.  

 

Preparation of a turbid medium (type I & type II sample) 

For the experiments reported in the main text, the turbid medium (type I sample) was prepared using 

polydimethylsiloxane (PDMS, Dow Corning, Sylgard 184) and polystyrene beads of 4.5 m 

diameter (Duke Scientific, Polymer Microspheres-7505A). The beads were mixed into the PDMS 

to obtain final concentration of 4.8×10-4 m-3. The scattering mean free path of the turbid sample was 

measured to be cl = 35.9 ± 0.2 m and the transport mean free path 'cl = 394.3 ± 2.0 m, through 

ballistic wave propagation detection [4] which was in good agreement with the value predicted by 

Mie scattering theory. With the same medium, we prepared four samples with different thicknesses. 

The measured sample thicknesses L were 86.5 m, 158.2 m, 232.6 m, and 376.6 m, 



corresponding to the numbers of reduced scattering events, '/2 clL , 0.44, 0.84, 1.18, and 1.91, 

respectively. 

 For the complementary experiments shown in Fig. S7, we prepared another scattering medium (type 

II sample) by mixing polystyrene beads with three different sizes of 1, 3, and 5 m in PDMS so that 

the medium was more complicated and more turbid than the type I sample for the experiments 

reported in the main text. The scattering mean free path and the transport mean free path of the type II 

turbid sample were measured to be cl = 19.4 ± 0.9 m and 'cl = 138.4 ± 1.1 m, respectively. We 

cured the medium in the form of layers with different thicknesses, 233.8 m, 306.4 m, and 397.3 m 

corresponding to '/2 clL = 3.38, 4.43, and 5.74, respectively. 

 

Preparation of biological specimens (type III sample) 

In order to demonstrate the ability of our technique for enhancing light energy delivery through 

biological specimens, we used chicken breast tissues as scattering media. For this purpose, we fixed a 

bulk of chicken breast tissue following the standard fixation protocol. We first sliced a chicken breast 

tissue into small pieces with a thickness less than 3 mm and washed them using phosphate buffered 

saline (PBS) solution. Next, the tissue samples were immersed in 10 % diluted formalin solution and 

stored overnight at 4 oC. After fixing the bulk tissue, we cut them into thinner slices and press them 

between a slide glass and a cover slip. The scattering mean free path and the transport mean free path 

of the fixed chicken breast tissue were measured to be cl = 67.6 ± 2.9 m and 'cl = 395.8 ± 3.6 m, 

respectively. We prepared two tissue slices with thicknesses of 339.7 m and 586.4 m corresponding 

to '/2 clL = 1.72 and 2.97, respectively. 

 

Transmission enhancement with different types of samples 

We performed the reported optimization procedure on type II and III samples and observed the energy 

enhancement in both cases. The observed transmission enhancements for various samples with N = 

1600 are shown in Fig. S7. Blue circles correspond to the results obtained with type I sample (the 



main results shown in Fig. S4), red squares illustrate transmission enhancement with type II sample, 

and black triangles show energy enhancement obtained with the chicken breast tissues ( type III 

sample). With type II samples, we observed 10.2 % and 2.5 % enhancements for '/2 clL = 3.38 and 

4.43, respectively. However, for the sample with '/2 clL = 5.74, no noticeable enhancement was 

observed. We believe that this is the limitation of our current technique for delivering enhanced light 

energy through a scattering medium. With the type III samples, the fixed chicken breast tissue slices, 

we obtained 27.4 % and 5.7 % enhancements for '/2 clL = 1.72 and 2.97, respectively. 

 

Control of spatial light modulator (SLM) for construction of TRRM 

Each incident channel for independent input wave is generated by writing an appropriate linear phase 

ramp containing an integer number of cycles in the vertical and horizontal directions. The phase ramp 

is applied to a square active area (350X350 pixels) of the SLM (Hamamatsu, LCOS-SLM X10468-

02). This sub region of the SLM fills the entire back aperture of the objective lens (OL1 in Fig. S1). 

We measured the time-gated backscattered signals from the sample for all the generated phase ramps 

in a sequential manner and constructed sample’s TRRM by gathering all detected signals. The 

measured complex fields have different speckle realizations due to sample turbidity. Only a single 

measurement is required for each channel of illumination because of the complex field recording via 

interferometric detection. This efficiently increases the measurement speed compared to phase-

stepping approach [5]. The maximum number of phase ramps used in our experiment is 1600; the 

total scanning time is about 160 seconds, a quantity that is determined primarily by the access time of 

the SLM (~50 msec). 
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