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1. Data description and processing 

Census data 

The LEHD Origin-Destination Employment Statistics (LODES) datasets [4] used by OnTheMap 

version 6 were reported using 2010 census blocks. Data files are state-based and organized into 

three types: Origin-Destination (OD), Residence Area Characteristics (RAC), and Workplace 

Area Characteristics (WAC), all at census block geographic detail. Data is available for most 

states for the years 2002-2010. The sources of data include: 

 Unemployment Insurance (UI) Wage Records reported by employers and maintained by 

each state. 

 The Office of Personnel Management (OPM) provides information on employees and 

jobs for most Federal employees. 

 The Quarterly Census for Employment and Wages (QCEW) provides information on 

firm structure and establishment location. 

What we used in this study is the Origin-Destination (OD) data. The structure of the OD files is 

in Table S1. We use row one to three in this study. 

Bay area cell phone data 

The Bay Area cell phone data are collected by a US cell phone operator and contain about half a 

million customers. Each time a person uses a phone (call/text message/web browsing) the time 

and the cell phone tower providing the service is recorded. This altogether generates 374 million 

location records in the three week observational period. A Voronoi tessellation is used to 

estimate the service area of a cell phone tower. It provides the rough region where a cell phone 

user can be located by his/her phone usage. Among these half a million users, we select 189,621 

most frequent users to study the commuting flows of the Bay Area [16]. For each user, the most 

frequently connected tower during day time (6am to 6pm) is assigned as the tower of the 

working location while the most frequently connected tower during night (6 pm to 6 am) is 

assigned as the home tower location. 

Rwanda, Lisbon and Santo Domingo cell phone data 

The Rwanda cell phone data are collected by a phone company and contain more than 1 million 

users. Each time a person calls the time and the cell phone tower providing the service is 

recorded. There are around 215 million records over a period of 40 days. The entire Rwanda is 

covered by 196 towers while the capital city Kigali is covered by 47. We select 410,309 most 

frequent users for this study. The cell phone data from Portugal and Dominican Republic are of 

similar format. Lisbon has 62,790 frequent users while Santo Domingo has 52,125 frequent users. 

2. K-means clustering of blocks 



The 2010 Census LEHD Origin-Destination Employment Statistics (LODES) datasets contain 

home and work location counts at block level. San Francisco has 7,348 blocks while in 

transportation planning a city is often divided into a much less number of regions [12, 11]. To 

make the estimation results at different scales comparable, here we adopted k-means clustering 

[7, 3] to divide the study region into 100 locations. The blocks are clustered according to their 

geographical locations. The procedure is performed in the following way: 

Randomly pick 100 (𝑙𝑜𝑛, 𝑙𝑎𝑡) coordinate pairs in the study region to represent the centers of the 

clusters. They are denoted as 𝜇𝑘, 𝑘 = 1, … ,100. Each block’s center location is denoted as a 

vector 𝑋𝑖, 𝑖 = 1, … , 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑙𝑜𝑐𝑘𝑠. The goal is to find an assignment of 𝑋𝑖 to clusters, as 

well as a set of vectors {𝜇𝑘}, such that the sum of the squares of the distances of each data point 

𝑋𝑖 to its closest vector 𝜇𝑘, is a minimum. Use 1-of-K coding  scheme to represent which cluster 

each data point 𝑋𝑖 should belong to. For each data point 𝑋𝑖, we introduce a corresponding set of 

binary indicator variables 𝑟𝑖𝑘 ∈ {0,1}, 𝑘 = 1, … , 100, describing which of the 100 clusters the 

data point 𝑋𝑖 is assigned to. If data point 𝑋𝑖 is assigned to cluster k then 𝑟𝑖𝑘 = 1, and 

𝑟𝑖𝑗=0 𝑓𝑜𝑟 𝑗 ≠ 𝑘. The objective function, 𝐽, is to minimize the sum of the squares of the distances 

of each data point to its assigned vector 𝜇𝑘: 

𝐽 = ∑ ∑ 𝑟𝑖𝑘‖𝑋𝑖 − 𝜇𝑘‖2
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𝑁
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Here the distance measure ‖𝑋𝑖 − 𝜇𝑘‖2 is the distance of the two coordinate pairs on earth. To 

find the values for 𝑟𝑖𝑘 and 𝜇𝑘, iteratively perform: 

1. Keep 𝜇𝑘 fixed, find the 𝑟𝑖𝑘 values to minimize 𝐽. This is simply to find the closest 𝜇𝑘 to each 

data point 𝑋𝑖. 

2. Keep 𝑟𝑖𝑘 fixed, find the 𝜇𝑘 values to minimize 𝐽. 𝐽 is a quadratic function of 𝜇𝑘. Take the 

derivative and with respect to 𝜇𝑘 and set it to zero shows that  

𝜇𝑘 =
∑ 𝑟𝑖𝑘𝑋𝑖𝑖

∑  𝑟𝑖𝑘𝑖
 

Iteratively perform these two steps until converge. 

Fig. S1 (a,b) shows the comparison of San Francisco’s blocks before and after clustering. 

3. IPF procedure for OD expansion 

We use the Bay area as an example to show that cell phone data could provide a good 

commuting OD seed matrix. In part 1 we have deduced home and work locations for each user. 

Here a location is a cell phone tower. There are 892 towers in the Bay area while in previous 

methods we divided San Francisco into 100 locations. In order to match these two different types 

of divisions we mapped the 892 cell phone towers to the previously defined 100 block clusters to 

form the 100 × 100 commuting OD matrix for the cell phone users. We should notice that the 



cell phone users we chose are like a sample from the whole population and the sampling rates in 

different block clusters may differ. In order to get the commuting OD matrix for the whole 

population from the cell phone user commuting OD matrix, we need to reweight or perform seed 

matrix expansion on the cell phone user commuting OD matrix. The iterative proportional fitting 

method is adopted [5].  

Iterative proportional fitting is a procedure for adjusting a table of data cells such that they add 

up to selected totals. Unadjusted data cells may be referred to as “seed”, and the selected totals 

may be referred to as “marginal”. In our two dimensional case, the “seed” is the cell phone user 

commuting OD matrix denoted as 𝑡𝑖𝑗, 𝑖 is the home location while 𝑗 is the work location. We’ve 

shown that population and POI are good representations of trip generation and attraction. We use 

them to represent the “marginals”. The column marginal 𝐷𝑗  is the trip attraction of each location 

and the row marginal 𝑂𝑖 is the trip generation of each location. 𝐷𝑗  are normalized to have the 

same sum as 𝑂𝑖. The numerical solution is: 

1. �̂�𝑖𝑗
𝑚 = 𝑡𝑖𝑗 , 𝑚 = 0 

2. a1)  𝐹𝑜𝑟 𝑖 = 1, … , 𝑁 

        i. Solve for 𝛼: ∑ �̂�𝑖𝑗
𝑚𝛼 = 𝑂𝑖𝑗  

        ii. �̂�𝑖𝑗
𝑚+1/2

= �̂�𝑖𝑗
𝑚𝛼 

    a2) 𝑚 = 𝑚 +
1

2
 

    b1) 𝐹𝑜𝑟 𝑗 = 1, … , 𝑁 

        i. Solve for 𝛼: ∑ �̂�𝑖𝑗
𝑚𝛼 = 𝐷𝑗𝑖  

        ii. �̂�𝑖𝑗
𝑚+1/2

= �̂�𝑖𝑗
𝑚𝛼 

    b 2) 𝑚 = 𝑚 +
1

2
 

3. Repeat step 2 until converge. 

Some may doubt that the close fit of the expanded Bay Area cell phone user seed matrix to the 

actual census data is because we used quite accurate marginal (in this case the population density 

and the density of POIs), so that the seed matrix do not have much influence. We test this 

assumption by doing the following comparison: compare the travelling distance 𝑃(𝑟) distribution 

of: 1) the census commuting OD data; 2) the cell phone user seed OD matrix without IPF 

expansion; 3) the IPF expanded cell phone user seed matrix; 4)  the IPF expanded random seed 

matrix. The result is shown in Fig. S2. Among all others, only the IPF expended cell phone user 

seed matrix gives close fit to the census data. As for the IPF expanded random seed matrix, even 

though it has accurate marginal, it still deviates from the actual 𝑃(𝑟) distribution. In this way the 

value of both the IPF method and the cell phone user seed matrix are shown. 



4. Comparison of the unconstrained with the doubly constrained gravity model 

In this section we compare the estimation results of the unconstrained gravity model and the 

doubly constrained gravity model on cell phone user commuting OD at city level. Here we use 

the cell phone records because the data is available at different countries so that we can perform 

a cross culture comparison. We choose 9 cities from the Bay area, Rwanda, Portugal and 

Dominican Republic: San Francisco, Oakland, San Jose, San Rafael, Lisbon, Kigali, La Romata, 

Santo Domingo, and Santiago. For each cell phone user we can estimate his/ her home and work 

location. Aggregating such results gives us the cell phone users’ commuting OD matrix. Use the 

margins (cell phone user commuting trip production and attraction number for each tower) as 

inputs for the following models.  

The unconstrained gravity model takes the form: 

𝑇𝑖𝑗 =
𝑛𝑖

𝛼𝑛𝑗
𝛽

𝑓(𝑟𝑖𝑗)
 

𝑇𝑖𝑗 is the flow between location 𝑖 and 𝑗. Each location is a tower. 𝑛𝑖 is the number of cell phone 

users whose home location is tower 𝑖, 𝑛𝑗  is the number of cell phone users whose working 

location is tower 𝑗. 𝑟𝑖𝑗 is the distance between them and 𝑓 is the distance decay function. 𝛼 and 𝛽 

are parameters to be fitted from data. We adopt the power distance decay function: 

𝑓(𝑟𝑖𝑗) = 𝑟𝑖𝑗
𝛾
 

The model turns into: 

𝑇𝑖𝑗 =
𝑛𝑖

𝛼𝑛𝑗
𝛽

𝑟𝑖𝑗
𝛾  

The parameters 𝛼, 𝛽, and 𝛾 could be estimated using least square linear regression [6] after a 

simple transformation: 

log(𝑇𝑖𝑗) = 𝛼 log(𝑛𝑖) + 𝛽 log(𝑛𝑗) − 𝛾log (𝑟𝑖𝑗) 

The inputs of the regression model are 𝑇𝑖𝑗, 𝑛𝑖, 𝑛𝑗  and 𝑟𝑖𝑗, the outputs are estimation results of  𝛼, 

𝛽, and 𝛾.  

The 𝛼, 𝛽, and 𝛾 regression results for the 9 cities are in Table S2. 

In some other studies [15, 1] a similar regression method is applied. The difference is that trips 

are divided into short and long trips and the parameters are estimated separately. In [14] the 

estimations of [𝛼, 𝛽, 𝛾] are [0.30, 0.64, 3.05] for short distances (𝑟 < 119𝑘𝑚) and 

[0.24, 0.14,0.29] for long distances. 

The doubly constrained gravity model takes the form: 



𝑇𝑖𝑗 =
𝛼𝑖𝛽𝑗𝑂𝑖𝐷𝑗

𝑟𝑖𝑗
𝛾  

𝑂𝑖 and 𝐷𝑗  are total trip production and attraction volumes at location 𝑖 and 𝑗. For a study region 

with 𝑛 locations, there are 2𝑛 parameters of 𝛼𝑖 and 𝛽𝑗, and one parameter of 𝛾. Unlike the 

unconstrained gravity model, though it has 2𝑛 + 1 parameters, only one parameter 𝛾 needs to be 

predetermined. 𝛼𝑖 and 𝛽𝑗 can be estimated even without knowing 𝑇𝑖𝑗 by iterating: 

𝛼𝑖 = 1/ ∑ 𝛽𝑗≠𝑖𝐷𝑗
𝑗

𝑟𝑖𝑗
𝛾
 

𝛽𝑗 = 1/ ∑ 𝛼𝑖≠𝑗𝑂𝑖
𝑖

𝑟𝑖𝑗
𝛾
 

Let’s use a very simple example to illustrate the algorithm. 

Suppose there is an area with 4 zones. Their distance matrix and 𝑂𝑖, 𝐷𝑗  are in Table S3. 

Initially 𝛼𝑖 and 𝛽𝑗 are all set to 1 and  𝛽𝑗 are updated as: 

𝛽1 =
1

1 ∗ 200 ∗ 1.52 + 1 ∗ 100 ∗ 22 + 1 ∗ 50 ∗ 3.52
= 0.00848 

𝛽2 =
1

1 ∗ 150 ∗ 1.52 + 1 ∗ 100 ∗ 2.52 + 1 ∗ 50 ∗ 32
= 0.01134 

𝛽3 =
1

1 ∗ 150 ∗ 22 + 1 ∗ 200 ∗ 2.52 + 1 ∗ 50 ∗ 22
= 0.01220 

𝛽4 =
1

1 ∗ 150 ∗ 3.52 + 1 ∗ 200 ∗ 32 + 1 ∗ 100 ∗ 22
= 0.01681 

Then 𝛼𝑖 are updated: 

𝛼1 =
1

0.01134 ∗ 70 ∗ 1.52 + 0.01220 ∗ 250 ∗ 22 + 0.01681 ∗ 150 ∗ 3.52
= 0.75715 

𝛼2 =
1

0.00848 ∗ 30 ∗ 1.52 + 0.01220 ∗ 250 ∗ 2.52 + 0.01681 ∗ 150 ∗ 32
= 1.13500 

𝛼3 =
1

0.00848 ∗ 30 ∗ 22 + 0.01134 ∗ 70 ∗ 2.52 + 0.01681 ∗ 150 ∗ 22
= 1.21780 

𝛼4 =
1

0.00848 ∗ 30 ∗ 3.52 + 0.01134 ∗ 70 ∗ 32 + 0.01220 ∗ 250 ∗ 22
= 1.14800 

After 4 iterations 𝛼𝑖 and 𝛽𝑗 values converge. The final OD matrix is in Table S4. 

Here we compare the results from: the unconstrained gravity model with parameters estimated in 

this study, the unconstrained gravity model with parameters estimated in previous study [14], the 



doubly constrained gravity model with parameters estimated in this study. For each model we 

compare the model estimation results with the cell phone user commuting OD matrix and 

calculate the correlation between them. Fig. S3 shows how the correlation changes from city to 

city and from model to model. In all cities the doubly constrained gravity model outperforms the 

unconstrained gravity model. It has correlation more than 0.8 in all the cities except in Kigali, the 

capital city of Rwanda. We’ve mentioned that the commuting flow in Rwanda is special because 

it’s more agglomerated: a few OD pairs have very large flows and these OD pairs are not 

necessarily close to each other. This makes it hard for gravity model prediction. The comparison 

of the doubly constrained gravity model and the no gravity model with parameters estimated in 

this study are in Fig. S4-S5. Again the doubly constrained gravity model prevails at each 

measurement. 

5) A statistical measurement of the commuting distance 

As is proposed in some previous studies [2, 8, 9, 10], there may exist some simple scaling for a 

given region of total area 𝐴 and population 𝑃. The length scale of a region is represented by √𝐴. 

The expected scaling of the total distance travelled by all the population 𝑙𝑑 should be of the form: 

𝑙𝑑

√𝐴
~𝑃𝛽 

In one limiting cases, if every individual is going to the nearest neighbor (with a typical distance 
1

√𝜌
 while 𝜌 = 𝑃/𝐴 is the average density of the city), 𝛽 = 1/2. In another case, if everyone goes 

randomly, 𝛽 = 1. The empirical cases show that the 𝛽 value is usually around 0.6. 

We did the same measurement for the 1000 different regions in the US and the cell phone users 

in Rwanda, Santo Domingo, and Lisbon. The results are shown in Fig. S5. The corresponding 𝛽 

value is 0.75. Since we are only counting the commuting distance, the larger 𝛽 value shows that 

people are willing to travel longer for working than doing other activities. 

6) Correlation between supply and demand at different scales 

We’ve used San Francisco, the Bay area, and the west coast of US to show that at large scales 

population density can represent both commuting trip generation and attraction while at small 

scales such as within a city the attraction is better represented by distribution of job opportunities, 

in this case the POI density. Then there remains the question: to which scale can population 

density represent both trip generation and attraction? 

To generalize and quantify this result, we change the scale gradually and sample multiple regions 

at each scale to observe the change in the correlation of: population – commuting generation, 

population – commuting attraction, POI – commuting generation, POI – commuting attraction. 

The result is in Fig. S7. The figure shows clearly that at large scales the four distributions are 

close to each other, while at smaller scales commuting trip generation is better represented by 

population density while commuting trip attraction is better represented by POI density. 



7) The relation between the number of opportunities and distance 

The main difference between the radiation model (also the intervening opportunity model) and 

the gravity model is the latter measures distance directly while the former represent ‘distance’ as 

the number of opportunities in between. Of course we’d expect the number of opportunities and 

the distance should generally have a positive correlation. But how high this correlation is? Fig. 

S8 shows the scatter plot of number of opportunities 𝑎 versus distance 𝑟 for each OD pair 

observed in the census in San Francisco, the Bay area, and the west coast. Although the positive 

correlation is clear, but given a certain distance the range of number of opportunities is large 

which is caused by the heterogeneity of the density of opportunities.   

To calculate the fractal dimension of the POI distribution, we regress 𝑎 on 𝑟 by applying 𝑎 =

𝜌𝑟𝑑𝐹. 𝜌 is the density of POIs and 𝑑𝐹 is fractal dimension. The 𝑑𝐹 for the three regions are 

respectively 1.69, 1.17, 1.60. 

8) The form of the 𝝀 distribution 

In the derivation of the extended radiation model, the chosen 𝑝(𝜆) distribution is the exponential 

distribution, while it is very reasonable to expect people could have either a scale-free or a well 

defined scale λ value distribution, so we did further explorations on this. In practice, what we 

cannot observe is each person’s actual 𝜆 value while what we can observe is the number of 

opportunities each person has considered before choosing the job destination, which is 

approximated by the number of point of interests. So the shape of the 𝑃>(𝑎) distribution can 

inform us which 𝜆 distribution to use. 

If the 𝜆 distribution is in a power law form, such as a Pareto distribution: 

𝑃(𝜆) =
𝑘𝜆𝑚𝑖𝑛

𝑘

𝜆𝑘+1
 

Then the probability of not accepting the closest 𝑎 opportunities is: 

𝑃>(𝑎) = ∫ 𝑒−𝑎𝜆
𝑘𝜆𝑚𝑖𝑛

𝑘

𝜆𝑘+1
𝑑𝜆

∞

𝜆𝑚𝑖𝑛

 

                          = −𝑘𝑎𝑘𝑥𝑚𝑖𝑛
𝑘 Γ[−𝑘, 𝑎𝑥] 

The Γ function is the upper incomplete gamma function, defined as: 

Γ(𝑎, 𝑥) = ∫ 𝑡𝑎−1𝑒−𝑡𝑑𝑡
∞

𝑥

 

For example, set 𝑘 = 3 and 𝜆𝑚𝑖𝑛 = 1, the 𝑃>(𝑎) plot then becomes the curve shown in Fig. S9. 

Comparing with Fig. 3(a) in the main text shows that the shape of this 𝑃>(𝑎) distribution is 

different from the observed 𝑃>(𝑎) distribution in the Bay area, West U.S., Portland-Seattle 

region, and L.A.-Las Vegas region. So we’d expect in regions larger than a city such a Pareto 𝜆 



distribution is not suitable. But Fig. S9 shows a similar shape to the observed 𝑃>(𝑎) distribution 

in San Francisco. As we can observe from Fig. 3(b) in the paper, at the city scale such as San 

Francisco, it is harder to find a close fit to the empirical data. At this scale the 𝛼 vs. 𝑙 relationship 

shown in Fig. 3(b) is a raw approximation. This might partly be because in such a compact and 

dense city like San Francisco, an exponential 𝜆 distribution is not most suitable, and this leads to 

an open question that what forms of 𝜆 distribution should be used in dense and compact regions 

or how to better model such cases. 

In general, people’s 𝜆 value distribution should not be changed by how we choose the region 

scale and zone size. But since in transportation and urban planning, practitioners divide a region 

into zones; trips within zones or outside the region boundary are not considered. Thus this filters 

out part of the trips, which causes the 𝜆 distribution to change when the region scale and zone 

granularity change. 

On the other hand, people’s 𝜆 distribution may have a well-defined scale. In this case if we 

assume that people’s 𝜆 values are the same, then: 

𝑃>(𝑎) = 𝑒−𝑎𝜆 

Again, it differs from the observations in regions larger than a city, but might be suitable for 

some city scale regions; this is the origin of the introduction of the α parameter to account for the 

differences of the zones that constitute trip origins and destinations. 

To sum up, at city scale we could explore different forms of 𝜆 distribution to find out how 

different characteristics of a city (scale, population density, etc) influence the best 𝜆 distribution; 

or to develop data-driven models to justify the form of the resulting distribution within cities. 

9) Further comparison between the extended radiation model and reference models 

As is shown by Equation (16) in the main text of the paper, in the original radiation model, the 

flow between two regions 𝑖 and 𝑗 is proportional to 
𝑛𝑗

𝑎𝑖𝑗
2 , 𝑛𝑗  is the number of opportunities in 

region 𝑗 while 𝑎𝑖𝑗 is the number of opportunities between 𝑖 and 𝑗. The extended radiation model 

is more flexible in that the flow is proportional to 
𝑛𝑗

𝑎𝑖𝑗
𝑘 , 𝑘 ∈ (1, +∞). This is because: 

In the main text equation (16) is:  

lim
𝛼→0

(𝑎𝑖𝑗 + 𝑛𝑗)
𝛼

− 𝑎𝑖𝑗
𝛼

𝑎𝑖𝑗
𝛼 = lim

𝛼→0
𝛼

𝑛𝑗

𝑎𝑖𝑗
 

The derivation process is: 

lim
𝛼→0

(𝑎𝑖𝑗 + 𝑛𝑗)
𝛼

− 𝑎𝑖𝑗
𝛼

𝑎𝑖𝑗
𝛼 = lim

𝛼→0
[(1 +

𝑛𝑗

𝑎𝑖𝑗
)

𝛼

− 1] 



The Taylor expansion of (1 +
𝑛𝑗

𝑎𝑖𝑗
)

𝛼

is: 

(1 +
𝑛𝑗

𝑎𝑖𝑗
)

𝛼

= 1 + ∑
𝛼(𝛼 − 1) … (𝛼 − 𝑛 + 1)

𝑛!

∞

𝑛=1

(
𝑛𝑗

𝑎𝑖𝑗
)

𝑛

 

This holds when 
𝑛𝑗

𝑎𝑖𝑗
∈ (−1,1).     

α → 0 occurs in dense and compact regions such as San Francisco, in such regions opportunities 

are more homogeneously distributed, so nj is at least order smaller than 𝑎𝑖𝑗, the first term of the 

expansion will dominate the value because the expansion term decays as (
𝑛𝑗

𝑎𝑖𝑗
)

𝑛

, so: 

(1 +
𝑛𝑗

𝑎𝑖𝑗
)

𝛼

= 1 + ∑
𝛼(𝛼 − 1) … (𝛼 − 𝑛 + 1)

𝑛!

∞

𝑛=1

(
𝑛𝑗

𝑎𝑖𝑗
)

𝑛

≈ 1 + α
𝑛𝑗

𝑎𝑖𝑗
 

Therefore in equation (16): 

lim
𝛼→0

(𝑎𝑖𝑗 + 𝑛𝑗)
𝛼

− 𝑎𝑖𝑗
𝛼

𝑎𝑖𝑗
𝛼 = lim

𝛼→0
[(1 +

𝑛𝑗

𝑎𝑖𝑗
)

𝛼

− 1] ≈ lim
𝛼→0

[1 + α
𝑛𝑗

𝑎𝑖𝑗
− 1] = lim

𝛼→0
[α

𝑛𝑗

𝑎𝑖𝑗
] 

Take this back to equation (15): 

𝑃(1|𝑛𝑖 , 𝑛𝑗 , 𝑎𝑖𝑗) = lim
𝛼→0

[(𝑎𝑖𝑗 + 𝑛𝑗)
𝛼

− 𝑎𝑖𝑗
𝛼 ](𝑛𝑖

𝛼 + 1)

(𝑎𝑖𝑗
𝛼 + 1)[(𝑎𝑖𝑗 + 𝑛𝑗)

𝛼
+ 1]

= lim
𝛼→0

(𝑎𝑖𝑗 + 𝑛𝑗)
𝛼

− 𝑎𝑖𝑗
𝛼

2

= lim
𝛼→0

𝑎𝑖𝑗
𝛼 ×

(𝑎𝑖𝑗 + 𝑛𝑗)
𝛼

− 𝑎𝑖𝑗
𝛼

2 × 𝑎𝑖𝑗
𝛼 = lim

𝛼→0

(𝑎𝑖𝑗 + 𝑛𝑗)
𝛼

− 𝑎𝑖𝑗
𝛼

2 × 𝑎𝑖𝑗
𝛼 = lim

𝛼→0
[α

𝑛𝑗

2 × 𝑎𝑖𝑗
] 

The α value is cancelled out when applying the result of equation (15) to equation (11). In 

equation (11) the α in the denominator and the numerator will cancel out. 

When the parameter 𝛼 → 0, 𝑘 → 1. So the minimum value of 𝑘 is 1, while in some cases (like 

small and dense cities) the required 𝑘 value is smaller than 1. This is the reason that we conclude 

under such scales it is hard to capture the accurate flows with general expressions for the 

distribution (as opposed to fitting actual trips). More detailed characteristics of the region such as 

landuse and road networks, as well as a more detailed model, may need to be considered at intra 

city scales (regions within the daily scale). 

The limitations of previous models are further illustrated in Fig. S10. Each black square 

represents a study region while each blue circle means a populated zone with the same number of 

population and opportunities. The rest of the region is assumed to be un-populated.  

The limitation of the original radiation model is shown by comparing Fig. S10 (a) with Fig. S10 

(b). Since the model is not taking distance into account, it will give the same flow estimation 



from zone 1 to zone 3 in both sub-figures. In reality because the distance between zone 1 and 

zone 3 is longer in sub-figure (b), we would expect less people commuting between zone 1 and 

zone 3. 

The limitation of the no constraint gravity model is shown in Fig. S10 (c). Because the distance 

between zone 1 and zone 3 is the same as the distance between zone 3 and zone 5, the model will 

give the same flow estimation from zone 1 to zone 3 and from zone 5 to zone 3. But since there 

is a highly populated region zone 7 between zone 1 and zone 3, we would expect some people 

originating from zone 1 being attracted to zone 7, so that less people will travel from zone 1 to 

zone 3. The gravity model cannot handle situations like this. 

The extended radiation aims to solve both limitations indicated above. Because the number of 

opportunities is taken into account directly, it solves the limitation shown in Fig. S10(c). Also the 

scaling parameter 𝛼 partly solves the limitation shown in Fig. S10 (a) and (b). In (b) the 𝛼 value 

will be larger than the 𝛼 value in (a), causing more people originating from zone 1 to travel to 

zone 2 and less people to travel to zone 3.  

The above analysis shows that both the borders/interface effect and the distribution of 

population/opportunities have influences on the applicability of the models. The extended 

radiation model partly solves the limitations, but there are still some open questions such as:  

1. How to better quantitatively measure the homogeneity of the population/opportunity 

distribution and incorporate a distance function. 

2. How to quantitatively measure the influence of the shape of the region. 
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Tables and Figures 

Table S1. Data format description for the OD files 

Pos Variable Type Length  

1 w_geocode Char 15 Workplace Census Block Code 

2 h_geocode Char 15 Residence Census Block Code 

3 S000 Num 8 Total number of jobs 

4 SA01 Num 8 Number of jobs of workers age 29 or younger 

5 SA02 Num 8 Number of jobs for workers age 30 to 54 

6 SA03 Num 8 Number of jobs for workers age 55 or older 

7 SE01 Num 8 Number of jobs with earnings $1250/month or less 

8 SE02 Num 8 Number of jobs with earnings $1251/month to $3333/month 

9 SE03 Num 8 Number of jobs with earnings greater than $3333/month 

10 SI01 Num 8 Number of jobs in Goods Producing industry sectors 

11 SI02 Num 8 Number of jobs in Trade, Transportation, and Utilities 

industry sectors 

12 SI03 Num 8 Number of jobs in All Other Services industry sectors 

13 createdate Char 8 Date on which data was created, formatted as YYYYMMDD 

 

  



Table S2. Regression parameters for the 9 cities 

 San 

Francisco 

Oakland San 

Jose 

San 

Rafael 

Lisbon Kigali La 

Romata 

Santo 

Domingo 

Santiago 

𝛼 0.17 0.21 0.16 0.21 0.21 0.16 0.53 0.25 0.34 

𝛽 0.09 0.18 0.15 0.23 0.23 0.11 0.33 0.20 0.27 

𝛾 0.46 0.67 0.56 0.73 0.73 0.43 0.91 0.68 0.73 

 

  



Table S3. Seed sample matrix without expansion 

Zone 1 2 3 4 𝑂𝑖 

1 0 1.5 2 3.5 150 

2 1.5 0 2.5 3 200 

3 2 2.5 0 2 100 

4 3.5 3 2 0 50 

𝐷𝑗  30 70 250 150 𝑇𝑜𝑡𝑎𝑙 = 500 

 

  



Table S4. Converged sample OD matrix 

Zone 1 2 3 4 𝑂𝑖 𝛼𝑖 

1 0 45 86 19 150 0.71159 

2 22 0 120 58 200 1.16540 

3 7 20 0 73 100 1.31410 

4 1 5 44 0 50 1.07820 

𝐷𝑗  30 70 250 150   

𝛽𝑗 0.00710 0.01343 0.01291 0.01482   

 

  



 

Fig. S1. San Francisco before and after block clustering. (a) The 7,348 blocks of San Francisco. 

(b) 100 block clusters acquired from k-means clustering 

 

  



 

Fig. S2. Comparison of the travelling distance 𝑃(𝑟) distributions. The census commuting OD 

data is in black. The cell phone user seed OD matrix without IPF expansion is in green. The IPF 

expanded cell phone user seed matrix is in purple. The IPF expanded random seed matrix is in 

red. Only the IPF expended cell phone user seed matrix gives close fit to the census data. As for 

the IPF expanded random seed matrix, even though it has accurate marginal, it still deviates from 

the actual 𝑃(𝑟) distribution. 

  



 

Fig. S3. The correlation between the census commuting OD pair volumes and results from 

different models. The doubly constrained gravity model’s result is in red. The unconstrained 

gravity model with parameters estimated from a previous study is in blue. The unconstrained 

gravity model with parameters estimated in this study is in green. In all cities the doubly 

constrained gravity model outperforms the unconstrained gravity model. It has correlation more 

than 0.8 with the actual census data in all the cities except Kigali.  

  



 

Fig. S4. Further comparison of the two gravity models in US cities: the doubly constrained 

gravity model and the unconstrained gravity model with parameters estimated in this study. The 

4 rows represent the 4 different cities and the three columns show: 1) the comparison between 

the actual and estimated flow volume from the doubly constrained gravity model; 2) the 

comparison between the actual and estimated flow volume from the unconstrained gravity model; 

3) the travel distance 𝑃(𝑟) distribution. 



 

Fig. S5. Further comparison of the two gravity models in other countries: the doubly constrained 

gravity model and the unconstrained gravity model with parameters estimated in this study. The 

4 rows represent the 4 different cities and the three columns show: 1) the comparison between 

the actual and estimated flow volume from the doubly constrained gravity model; 2) the 

comparison between the actual and estimated flow volume from the unconstrained gravity model; 

3) the travel distance 𝑃(𝑟) distribution. Again the doubly constrained gravity model prevails at 

each measurement. 



 

Fig. S6. A scaling measurement of  
𝑙𝑑

√𝐴
 𝑣𝑠. 𝛽. 𝑙𝑑 is the total distance travelled by all the 

population in a region. 𝐴 is the total area. 𝑃 is the population. They should follow the scaling 

relationship: 
𝑙𝑑

√𝐴
~𝑃𝛽. The blue dots are 1000 randomly selected regions from the US with 

different sizes and population. Three special cases: the west coast of US, the Bay Area, and San 

Francisco are marked in green. The measured values for cell phone users in Rwanda, Santo 

Domingo and Lisbon are also marked. The 𝛽 value is 0.75, larger than the empirical result of 0.6 

which measures travels for all activities, which indicates that people are willing to travel further 

for commuting than for other activities. 

 

  



 

Fig. S7. Correlation between: population – commuting generation, population – commuting 

attraction, POI – commuting generation, POI – commuting attraction. At small scales commuting 

trip attraction is better represented by POI density while at large scales these four distributions 

have high correlation between each other. 

 

  



 

Fig. S8. Scatter plot of the number of opportunities 𝑎 versus distance 𝑟 for San Francisco, the 

Bay area, and the west coast of US.  

 

  



 

Fig. S9. 𝑃>(𝑎) distribution when 𝜆 obeys a Pareto distribution 

 

  



 

Fig. S10. Illustration of the limitations of the reference models. Each black square represents a 

study region while each blue circle means a populated zone with the same number of population 

and opportunities. The rest of the region is assumed to be un-populated.  

 

 

 


