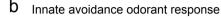
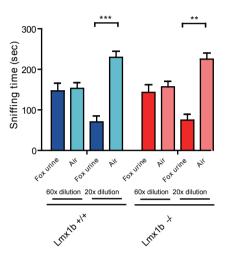
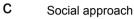
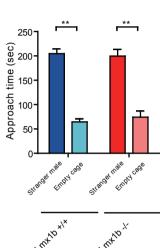
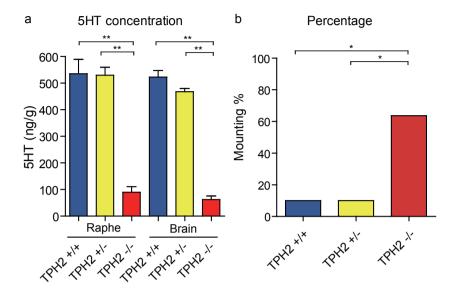

Supplementary Figure 1 | Mounting of wt target female mice by male mice. When a test male was presented with an estrous female, there was no statistically significant difference among $Lmx1b^{+/+}$ (n=11) $Lmx1b^{+/-}$ (n=13) and $Lmx1b^{-/-}$ (n=11) males in mounting percentage (a, p>0.5, X² test), the latency (b, p>0.5, one-way ANOVA), frequency (c, p>0.5 one-way ANOVA) or duration (d, p>0.5, one-way ANOVA).

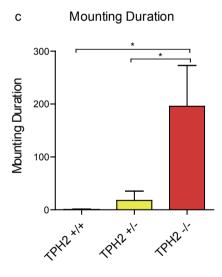


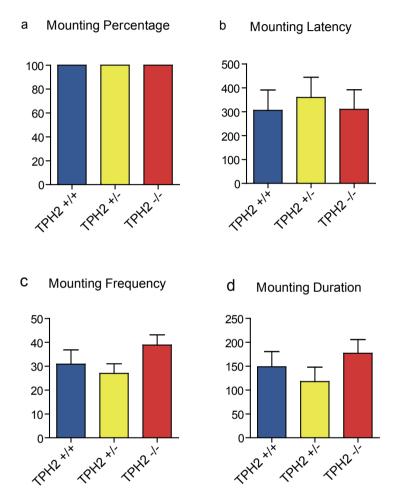



Supplementary Figure 2 | Total sniffing time and total time on bedding. Data from the same experiments as those shown in Fig. 3. In **a**, n=16 for $Lmx1b^{+/+}$, n=12 for $Lmx1b^{+/-}$, n=16 for $Lmx1b^{-/-}$. In **b**, n=9 for ePet1-Cre, n=16 for $Lmx1b^{+/+}$, n=8 for $Lmx1b^{+/-}$ and n=17 for $Lmx1b^{-/-}$. **a**, Total sniffing time shows the time (in seconds) of a male mouse spent on sniffing the slide (either the female genital odor side or the male genital odor side) within 3 mins. Total sniffing time was less in $Lmx1b^{-/-}$ males than in $Lmx1b^{+/-}$ and $Lmx1b^{+/-}$ males (p<0.01 for $Lmx1b^{+/+}$ vs. $Lmx1b^{-/-}$, p<0.05 for $Lmx1b^{+/-}$ vs. $Lmx1b^{-/-}$, p>0.05 for $Lmx1b^{+/+}$ vs. $Lmx1b^{-/-}$, one-way ANOVA). **b**, Four groups spent a similar amount of total time on male and female bedding (p>0.05 for all pair-wise comparisons, one-way ANOVA).

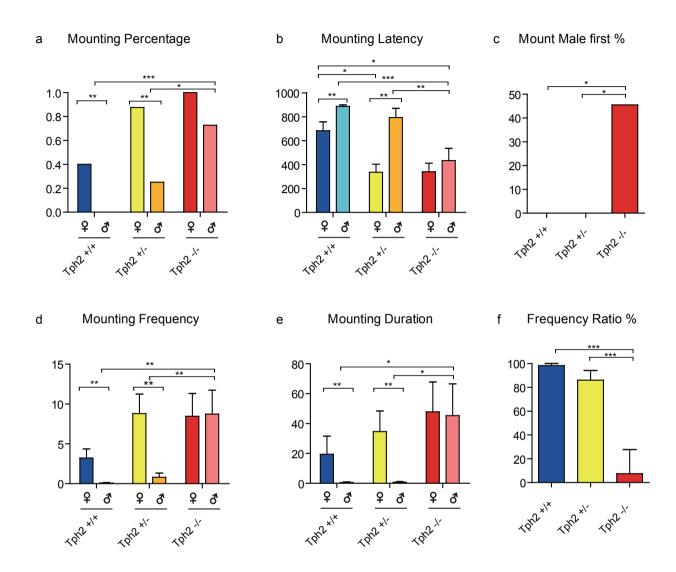








Supplementary Figure 3 | **Odor discrimination.** a, $Lmx1b^{+/+}$ and $Lmx1b^{-/-}$ males preferred sesame oil over air (p<0.05, t test; n=18 for $Lmx1b^{+/+}$, n=14 for $Lmx1b^{-/-}$). b, Lmx1b^{+/+} and Lmx1b^{-/-} males were similar in preferring air over fox urine when the concentration of fox urine was high (20X dilution of original urine). *** indicates p<0.001 and ** indicates p<0.01, t test. n=11 for $Lmx1b^{+/+}$, n=10 for $Lmx1b^{-/-}$.c, Both $Lmx1b^{+/+}$ and $Lmx1b^{-/-}$ males spent more time in the arm with a caged C57 male than in the empty arm (p<0.01, t test; n=13 for $Lmx1b^{+/+}$, n=15 for $Lmx1b^{-/-}$). No difference was detected between $Lmx1b^{+/+}$ and $Lmx1b^{-/-}$ males (p>0.05 for all other pair-wise comparisons, t test).

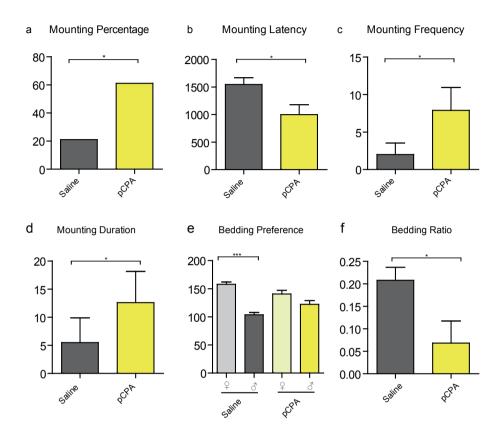


Supplementary Figure 4 | **Brain chemistry and behaviors of** *Tph2* **knockout males. a,** Amounts of 5-HT in either the raphe or the whole brain minus the raphe (abbreviated as "brain") in $Tph2^{+/+}$ (n=7), $Tph2^{+/-}$ (n=9) and $Tph2^{-/-}$ (n=7) mice were analyzed by HPLC. 5-HT level was significantly reduced in both the raphe and the brain of $Tph2^{-/-}$ mice. **b-c**, Male-male mounting behavior of $Tph2^{+/+}$ (n=10), $Tph2^{+/-}$ (n=11) mice. Compared with $Tph2^{+/+}$ and $Tph2^{+/-}$, $Tph2^{-/-}$ males showed a higher percentage (p<0.05, X^2 test), and longer duration (p<0.05 for $Tph2^{+/+}$ vs. $Tph2^{-/-}$ one-way ANOVA) in mounting males.

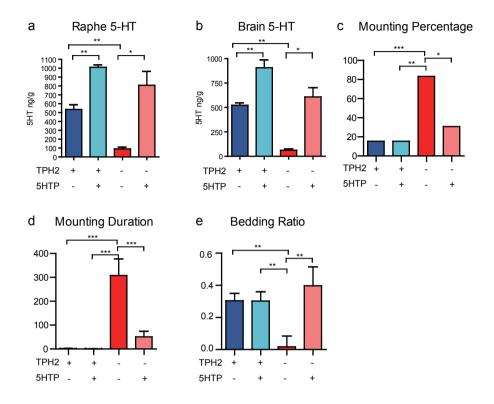
Supplementary Figure 5 | Mounting of female target mice by Tph2 knockout males. When a test male was presented with an estrous female, there was no statistically difference among $Tph2^{+/+}$, $Tph2^{+/-}$ and $Tph2^{-/-}$ males in mounting percentage (a, p>0.5, X² test), latency (b, p>0.5, one-way ANOVA), frequency (c, p>0.5, one-way ANOVA), or duration (d, p>0.5, one-way ANOVA) of mount. n=13 for $Tph2^{+/+}$, n=14 for $Tph2^{+/-}$, n=16 for $Tph2^{-/-}$.

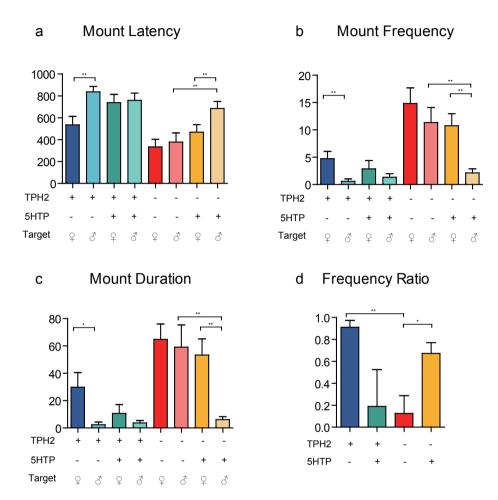
Supplementary Figure 6 | **Mounting preference by** *Tph2* **knockout mice.** Each test male was presented with two adult mice, one male and one estrous female, and its mating choice was analyzed for 15 mins. **a**, A higher percentage of $Tph2^{+/+}$ mice mounted female than male targets (n=14, p<0.01, X^2 test) as did $Tph2^{+/-}$ males (n=10, p<0.01, X^2 test). A similar percentage of $Tph2^{-/-}$ males mounted females and males (n=11, p>0.05, X^2 test). More $Tph2^{-/-}$ mounted males than $Tph2^{+/+}$ mice (p<0.001, X^2 test) and $Tph2^{+/-}$ mice (p<0.5, X^2 test). **b**, $Tph2^{+/+}$ males mounted female targets faster than male targets (p<0.01, t test), as did $Tph2^{+/-}$ males (p<0.01, t test). Mounting latencies of $Tph2^{-/-}$ males for females and males were not significantly different (p>0.05, t test). **c**, More than 40% $Tph2^{-/-}$ males, but none of the $Tph2^{+/+}$ or $Tph2^{+/-}$ males, chose the male as their first mounting targets. (p<0.05 for $Tph2^{+/+}$ vs. $Tph2^{-/-}$; p<0.05 for $Tph2^{+/-}$ vs. $Tph2^{-/-}$, p>0.05 for $Tph2^{+/-}$ vs. $Tph2^{+/-}$ vs. $Tph2^{-/-}$, p>0.05 for $Tph2^{+/-}$ vs. $Tph2^{+/-}$ hales mounted females significantly more often than males (p<0.01, t test),

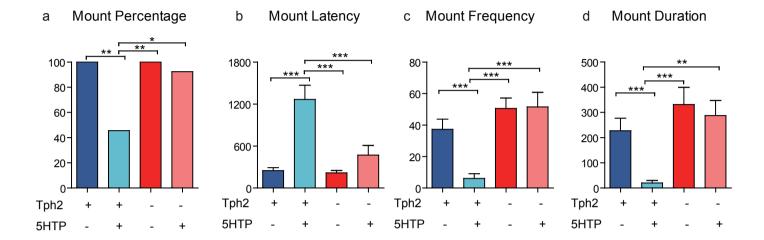
as did $Tph2^{+/-}$ males (p<0.05, t test). $Tph2^{-/-}$ males mounted females as often as males (p>0.05, t test). $Tph2^{-1/2}$ males mounted males more than $Tph2^{+1/2}$ (p<0.01, one-way ANOVA) and $Tph2^{+/-}$ (p<0.01, one-way ANOVA). e, $Tph2^{+/-}$ males spent longer time mounting females than males (p<0.01, t test) as did Tph2^{+/-} males (p<0.01, t test). Tph2^{-/-} males did not show difference in duration of mounting males or females (p>0.05, t test). $Tph2^{-/-}$ males spent more time mounting males than $Tph2^{+/+}$ (p<0.05, one-way ANOVA) and $Tph2^{+/-}$ (p<0.05, one-way ANOVA). f. The mounting ratio of $Tph2^{-/-}$ was significantly different from $Tph2^{+/+}$ and $Tph2^{+/-}$ (p<0.001, one-way ANOVA).


5HT concentration а

600 400 200 0.


b HIAA concentration


Supplementary Figure 7 | Levels of 5-HT analyzed by HPLC. a, 5-HT level was reduced in pCPA treated mice than the control mice in the whole brain (p<0.001, t test). b, The HIAA level also reduced in pCPA treated mice than the control treated mice in the whole brain (p<0.001, t test). n=8 for pCPA treated mice, n=8 for control mice.


Supplementary Figure 8 | Effect of 5-HT depletion by pCPA on adult behaviors. Male C57 males treated with pCPA or saline in adulthood were tested for sexual behaviors. a-d (n=18 for pCPA and n=19 for control males). Mice treated with pCPA showed male-male mounting, with a higher percentage (a, p<0.5, X² test), shorter latency (b, p<0.05, t test), higher frequency (c, p<0.05, t test) and longer duration (d, p<0.05, t test) than control mice. e, Computer analysis of bedding preference. The total time spent above both male and female bedding was not different between pCPA treated and control males (p>0.05, t test). Control males spent more time above female bedding than male bedding (p<0.001, t test). pCPA treated males showed no difference between female and male bedding (p>0.05, t test). f, The bedding preference ratio of pCPA males were significantly different from the control males (p<0.05, t test). n=36 for saline group, n=36 for pCPA group.

Supplementary Figure 9 | 5-HTP rescue of chemical and behavioral deficits in **Tph2** knockout mice. a-b, Levels of 5-HT were analyzed in $Tph2^{+/+}$ and $Tph2^{-/-}$ males 35 min after injection of either 5-HTP (40 mg/kg body weight) or control saline (n=5 for $Tph2^{+/+}$ with saline, n=5 for $Tph2^{-/-}$ with saline, n=5 for $Tph2^{+/+}$ with 5-HTP, and n=6 for Tph2^{-/-} with 5-HTP). 5-HTP could significantly rescue the levels of 5-HT. 5-HTP could also increase the levels of 5-HT and in the wt. c-d, Male-male mounting in $Tph2^{-/-}$ mice was significantly rescued by 5-HTP (results from the same experiments as those in Fig. 6b and c): the mounting percentage was decreased (p<0.05) and duration shortened (p<0.001). The mounting percentage of $Tph2^{-/2}$ mice with 5-HTP injection was not significantly different from those of $Tph2^{+/+}$. The mounting duration of Tph2^{-/-} mice with 5-HTP injection was not significantly different from those of $Tph2^{+/+}$ (with saline or with 5-HTP, p>0.1). e, Bedding preference was monitored between 35 and 40 min after injection. Although 5-HTP could further increase 5-HT level in Tph2+/+ mice, it did not cause statistically significant changes in bedding preference of $Tph2^{+/+}$ males.

Supplementary Figure 10 | Effect of 5-HTP on mating choice. $Tph2^{+/+}$ and $Tph2^{-/-}$ males treated with 5-HTP or saline were tested for mating choice with two adult mice, one male and one estrous female. n=15 for $Tph2^{+/+}$ and n=16 for $Tph2^{-/-}$. 5-HTP significantly rescued the mating choice phenotype of $Tph2^{-/-}$ mutant males in mounting latency (**a**, p<0.01, t test), frequency (**b**, p<0.01, t test), duration (**c**, p<0.01, t test), and the frequency ratio (**d**, p<0.05, t test).

Supplementary Figure 11 | Effect of 5-HTP on male-female mounting. Tph2+/+ and Tph2^{-/-} males treated with 5-HTP or saline were tested with estrous C57 females. n=11 for Tph2^{+/+} and n=13 for Tph2^{-/-}. 5-HTP did not change male-female mounting of $Tph2^{-/-}$ males, but increased the male-female mount latency (a, p<0.001, t test), decreased the mounting frequency (b, p<0.01, t test) and duration (c, p<0.01, t test) of $Tph2^{+/+}$.

Supplementary Data Set 1

Statistics for all regular figures. Because of space constraints, statistics and number of animals tested were omitted from the text and the figure legends. They are listed here. In Figure 1 a-d, n=9 for ePet1-Cre, n=11 for $Lmx1b^{+/+}$, n=13 for $Lmx1b^{+/-}$, n=14 for $Lmx1b^{-/-}$ a, p<0.001 when $Lmx1b^{-/-}$ was compared with $Lmx1b^{+/+}$, $Lmx1b^{+/-}$ or ePet1-Cre; p>0.05 for other comparisons (X² test). b, p<0.001 (one-way ANOVA) when $Lmx1b^{-/-}$ were compared with $Lmx1b^{+/+}$. $Lmx1b^{+/-}$ or ePet1-Cre. c. p<0.001 when $Lmx1b^{-/-}$ was compared with $Lmx1b^{+/+}$, $Lmx1b^{+/-}$ or ePet1-Cre; p>0.05 for other comparisons (one-way ANOVA). d, p<0.001 (one-way ANOVA) when Lmx1b^{-/-} were compared with $Lmx1b^{+/+}$, $Lmx1b^{+/-}$ or ePet1-Cre. e-f, n=9 for ePet1-Cre, n=14 for $Lmx1b^{+/+}$, n=16 for $Lmx1b^{+/-}$, n=14 for $Lmx1b^{-/-}$. f, USV towards females were similar among males of ePet1-Cre, $Lmx1b^{-/-}$, $Lmx1b^{+/+}$, or $Lmx1b^{+/-}$ (p>0.05, X^2 test). USV towards male intruders were higher from Lmx1b^{-/-} males than from ePet1-Cre. $Lmx1b^{+/+}$ or $Lmx1b^{+/-}$ males (p<0.05-X² Test). g, USVs towards males were higher from $Lmx1b^{-/-}$ males than those from ePet1-Cre, $Lmx1b^{+/+}$ or $Lmx1b^{+/-}$ males (p<0.05, one-way ANOVA), whereas there is no statistically significant difference among ePet1-Cre, Lmx1b^{+/+}, Lmx1b^{+/-} and Lmx1b^{-/-} males in their USVs towards females (p>0.05, one-way ANOVA).

In Figure 2, n=9 for ePet1-Cre, n=14 for $Lmx1b^{+/+}$, n=10 for $Lmx1b^{+/-}$ and n=11 for $Lmx1b^{-/-}$. a, a higher percentage of ePet1-Cre, $Lmx1b^{+/+}$ and $Lmx1b^{+/-}$ mice mounted female than male targets (p<0.05, X^2 test). A similar percentage of $Lmx1b^{-/-}$ males mounted females and males (p>0.05, X^2 test). b, ePet1-Cre, $Lmx1b^{+/+}$ and

 $Lmx1b^{+/-}$ males mounted female targets faster than male targets (p<0.05 for ePet1-Cre, p<0.05 for $Lmx1b^{+/-}$, p<0.01 for $Lmx1b^{+/-}$, t test). Mounting latencies of $Lmx1b^{-/-}$ males for females and males were not significantly different (p>0.05, t test). c, p<0.05 for ePet1-Cre vs. $Lmx1b^{-/-}$, p<0.05 for $Lmx1b^{+/+}$ vs. $Lmx1b^{-/-}$; p<0.05 for $Lmx1b^{+/-}$ vs. $Lmx1b^{-/-}$; p<0.05 for $Lmx1b^{+/-}$ vs. $Lmx1b^{-/-}$ (X² test). d, ePet1-Cre males mounted females significantly more often than males (p<0.01, t test), as did $Lmx1b^{+/+}$ (p<0.01, t test) and $Lmx1b^{+/-}$ males (p<0.05, t test). $Lmx1b^{-/-}$ males mounted females as often as males (p>0.05, t test). e, ePet1-Cre males spent more time mounting females than males (p<0.01, t test), as did $Lmx1b^{+/+}$ (p<0.01, t test) and $Lmx1b^{+/-}$ males (p>0.05, t test). $Lmx1b^{-/-}$ males did not show differences in mounting males or females (p>0.05, t test). $Lmx1b^{-/-}$ males did not show differences in mounting males or females (p>0.05, t test). f, The mounting frequency ratio of $Lmx1b^{-/-}$ was different from those of ePet1-Cre, $Lmx1b^{+/+}$ and $Lmx1b^{+/-}$ (p<0.01, one-way ANOVA)

In Figure 3 a-c, n=16 for $Lmx1b^{+/+}$, n=12 for $Lmx1b^{+/-}$, n=16 for $Lmx1b^{-/-}$. In d-f, n=9 for ePet1-Cre, n=16 for $Lmx1b^{+/+}$, n=8 for $Lmx1b^{+/-}$ and n=17 for $Lmx1b^{-/-}$. a, $Lmx1b^{+/+}$ males spent more time sniffing female than male genital odor (p<0.001, t test) as did $Lmx1b^{+/-}$ males (p<0.01, t test). $Lmx1b^{-/-}$ males spent a similar amount of time on female and male genital odor (p>0.05, t test). Three groups were not significantly different in male genital odor sniffing time (p>0.05, one-way ANOVA) but $Lmx1b^{-/-}$ males spent less time in sniffing female genital odor than the other 2 groups (p<0.01 for $Lmx1b^{+/+}$ vs. $Lmx1b^{-/-}$, p<0.01 for $Lmx1b^{+/-}$ vs. $Lmx1b^{-/-}$, one-way ANOVA). b, Sniffing ratio was calculated from (time on female side minus time on male side)/total sniffing time of each mouse. $Lmx1b^{-/-}$ males were significantly

different from $Lmx1b^{+/+}$ and $Lmx1b^{-/-}$ males (p<0.05 for $Lmx1b^{+/+}$ vs. $Lmx1b^{-/-}$, p<0.05 for $Lmx1b^{+/-}$ vs. $Lmx1b^{-/-}$, p>0.05 for $Lmx1b^{+/+}$ vs. $Lmx1b^{+/-}$, one-way ANOVA). c, p<0.001 for $Lmx1b^{+/+}$ vs. $Lmx1b^{-/-}$, p<0.05 for $Lmx1b^{+/-}$ vs. $Lmx1b^{-/-}$, p>0.05 for $Lmx1b^{+/+}$ vs. $Lmx1b^{+/-}$ (X² test). d, ePet1-Cre males spent more time above female bedding than male bedding (p<0.001, t test) as did $Lmx1b^{+/+}$ (p<0.001, t test) and $Lmx1b^{+/-}$ males (p<0.01, t test). $Lmx1b^{-/-}$ males spent a similar amount of time above female and male bedding (p>0.05, t test). Compared with ePet1-Cre and $Lmx1b^{+/+}$, $Lmx1b^{-/-}$ males spent less time above female bedding (p<0.01 for ePet1-Cre vs. $Lmx1b^{-/-}$, p<0.05 for $Lmx1b^{+/+}$ vs. $Lmx1b^{-/-}$, one-way ANOVA) but more time above male bedding (p<0.01, one-way ANOVA). e, The bedding time ratio (female-male bedding)/total time on bedding of Lmx1b^{-/-} was different from ePet1-Cre (p<0.01, one-way ANOVA) and $Lmx1b^{+/+}$ (p<0.01, one-way ANOVA). f, Compared with ePet1-Cre, $Lmx1b^{+/+}$ and $Lmx1b^{+/-}$, a significantly higher percentage of Lmx1b^{-/-} males spent more time above male bedding (p<0.001 for ePet1-Cre vs. $Lmx1b^{-/-}$, p<0.001 for $Lmx1b^{+/+}$ vs. $Lmx1b^{-/-}$, p<0.05 for $Lmx1b^{+/-}$ vs. $Lmx1b^{-/-}$, X^2 test).

In Figure 4, a, both $Lmx1b^{+/+}$ and $Lmx1b^{-/-}$ males showed habituation in sniffing time to ovariectomized females presented repeatedly (p<0.001 for 1st vs 4th tests by both $Lmx1b^{+/+}$ and $Lmx1b^{-/-}$, one-way ANOVA). Dishabituation was observed for both $Lmx1b^{+/+}$ and $Lmx1b^{-/-}$ when new ovariectomized females were introduced (4th vs 5th p<0.01 for both $Lmx1b^{+/+}$ and $Lmx1b^{-/-}$, one-way ANOVA). No statistic difference was found between $Lmx1b^{+/+}$ and $Lmx1b^{-/-}$ males at any point (p>0.05, t test; n=23 for

 $Lmx1b^{+/+}$, n=22 for $Lmx1b^{-/-}$). b, After 7 training sessions with male and female urine, $Lmx1b^{+/+}$ males increased their correct rate from 43.1±1.8% to 84.8±4.0%, while $Lmx1b^{-/-}$ males from 37.6±2.7% to 86.4±3.3%. No significant difference was detected between $Lmx1b^{+/+}$ and $Lmx1b^{-/-}$ males at any point (p>0.05, t test; n=14 for $Lmx1b^{+/+}$, n=14 for $Lmx1b^{-/-}$).

In Figure 5, a-b, Male-male mounting behavior of $Tph2^{+/+}$ (n=10), $Tph2^{+/-}$ (n=10) and $Tph2^{-/-}$ (n=11) mice. Compared with $Tph2^{+/+}$ and $Tph2^{+/-}$, $Tph2^{-/-}$ males showed a shorter latency (p<0.05 for both $Tph2^{+/+}$ vs. $Tph2^{-/-}$ and $Tph2^{+/-}$ vs. $Tph2^{-/-}$), and higher frequency (p<0.05 for both $Tph2^{+/+}$ vs. $Tph2^{-/-}$ and $Tph2^{+/-}$ vs. $Tph2^{-/-}$ one-way ANOVA) in mounting males. c, Both $Tph2^{+/+}$ (n=22) and $Tph2^{+/-}$ (n=17) males significantly preferred female over male bedding (p<0.01, t test), whereas $Tph2^{-/-}$ (n=20) males did not show preference between male and female bedding (p>0.05, t test). d, Both $Tph2^{+/+}$ and $Tph2^{+/-}$ males significantly preferred female over male genital odor (p<0.001 for $Tph2^{+/+}$, p<0.01 for $Tph2^{+/-}$, t test), whereas $Tph2^{-/-}$ males did not show preference between male and female genital odor (p>0.05, t test).

In Figure 6, a, n=5 for $Tph2^{+/+}$ with saline, n=5 for $Tph2^{-/-}$ with saline, n=5 for $Tph2^{+/+}$ with 5-HTP, and n=6 for $Tph2^{-/-}$ with 5-HTP). b-c, n=13 for $Tph2^{+/+}$ with saline, n=12 for $Tph2^{-/-}$ with saline, n=13 for $Tph2^{+/+}$ with 5-HTP, and n=12 for $Tph2^{-/-}$ with 5-HTP. Male-male mounting in $Tph2^{-/-}$ mice monitored between 20 and 50 min after injection was significantly rescued by 5-HTP: the latency was lengthened (p<0.01) and frequency reduced (p<0.01). The mounting latency of $Tph2^{-/-}$ mice with 5-HTP injection was not significantly different from those of $Tph2^{+/+}$ (with saline or

with 5-HTP, p>0.1). The mounting frequency of $Tph2^{-/-}$ mice with 5-HTP injection was not significantly different from those of $Tph2^{+/+}$ (with saline or with 5-HTP, p>0.05). d, Bedding preference was monitored between 35 and 40 min after injection. 5-HTP could significantly restore the preference of female over male bedding by $Tph2^{-/-}$ males.