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RMSD Figure

Figure S1: RMSD of heavy atoms comparison between RBD monomer(in Black) and dimer
(in Red) based on all monomer and dimer simulations. The loop regions and termini are not
considered, and each monomer trajectory and each unit in dimer trajectories are aligned on
the crystal structure of RBD initially. For the RBD dimer simulations, all RMSD overlapped.
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RMSF Figure

Figure S2: RMSF comparison between plexin RBD monomer(in Black) and dimer (in Red)
simulations based on all (including backbone and sidechain atoms) (top panel), backbone
atoms only(middle panel), and sidechain atoms only(bottom panel).
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Dynamical Network Analysis Results for RBD Dimer

From the dihedral angle cross-correlation calculation, no signal pathways were detected for

RBD dimer. Using the source and sink residue numbers from the RBD monomer as input,

the network pathways for RBD dimer were predicted with results shown below. It is obvious

that in the dimer form, the signal pathways can transmit from one unit to another unit

through the L4 loop. Although it is always believed that the two monomers should be

symmetric in structure, the signal pathways predicted are not symmetric for two units, with

more signal pathways in unit 1 (on the left of both side view and top view figures) than unit

2.

Figure S3: Dynamical network pathways predicted for RBD dimer in side view (Left) and in
top view (Right). The signal pathway 1 is shown in Green for unit 1 (left), signal pathway
2 in pink which is mostly overlapped by signal pathway 1, and with the shortest pathway
shown in orange. The signal pathway 1 is shown in Lime for unit 2, signal pathway 2 in
purple which is mostly overlapped by signal pathway 1, and with the shortest pathway shown
in red.
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Principle Component Analysis Results

Principle Component Analysis (PCA) is a mathematical procedure converting a number

of possibly correlated variables into a number of uncorrelated variables using orthogonal

transformations. In order to find out which structure was kept the same after plexin-B1

RBD binded, we compared the configurational space between monomer trajectory and dimer

trajectory by calculating first 5 major principle components through the Wordom1 program.

Comparing the configurational distribution of RBD in monomer and dimer forms, we

have results shown in Figure S4. We can see that there is considerable structural overlap

between monomer and dimer forms. During the binding, only part of the RBD structure

changed to facilitate the process. This is consistent with previous RMSF results, which also

showed extensive similarities in structure between the monomer and dimer forms.
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Figure S4: PCA comparison between combined plexin-B1 RBD monomer trajectories and
each RBD in the combined dimer trajectories. Principle component 2 vs. principle compo-
nent 1 comparison between plexin RBD monomer in A) and dimer forms in B); Principle
component 3 vs. principle component 2 comparison between plexin RBD monomer in C)
and dimer forms in D). The plexin RBD monomer data is shown in black dots in A) and C),
plexin RBD dimer data is shown in red in B) and blue in D).
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Binding Entropy Results

Based on S2 results for RBD in monomer and dimer forms, the plexin RBD binding entropy

was estimated. The binding entropy is due to changes in bond motions of mainchain and

sidechain N-H, C-H and C=O groups using Lipari-Szabo order parameters, S2, following

the approach of Yang and Kay.2 S2, reflecting the amplitude of bond fluctuations on the

ps-ns timescale, and correlation times were calculated using CHARMM over the same time

intervals as we did on the previous project3 for S2 calculations.

The conformational entropy change can be calculated from the change in S2 using Equa-

tion 1 and 2.2

Sp/k = A+ ln π[3− (1 + 8SLZ)1/2] (1)

Here SLZ is the Lipari-Szabo order parameters, has the relationship with S2 calculated

from simulation as:

SLZ =
√
S2 (2)

An order parameter describes the amplitude of the internal motion of a bond vector

and depends on the distribution of orientations of the vectors. Entropy also depends on the

distribution of the orientations of the bond vectors. This method has been applied to analyze

the protein binding with ligand,4 and protein folding.2 In this project, the conformational

entropy change in dimerization process was calculated based on ∆S2.2

Calculating entropy change based on order parameter change during the binding process,

binding entropy data are shown in Table S1. It can be seen that surface groups contributed

more to the entropy decrease than core groups, and sidechain groups contributed more to

the entropy decrease than backbone atoms because of the larger amount of bonds involved

in the sidechains and surface residues. The entropy per bond is similar for the three kinds

of bonds, and at different locations.

Mapping the specific binding entropy for each bond types on each heavy atom in RBD
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Table S1: Summation of binding entropies for different bond types at different locations

bonds CH
entropy number avg

(kcal/mol) (kcal/mol)
backbone-core -71.84 38 -1.89
backbone-surf -154.81 73 -2.12
sidechain-core -349.98 201 -1.74
sidechain-surf -842.48 492 -1.71
bonds NH

entropy number avg
(kcal/mol) (kcal/mol)

backbone-core -90.78 41 -2.21
backbone-surf -106.48 58 -1.84
sidechain-core -96.19 43 -2.24
sidechain-surf -157.17 139 -1.13
bonds CO

entropy number avg
(kcal/mol) (kcal/mol)

backbone-core -61.86 39 -1.59
backbone-surf -168.79 67 -2.52
sidechain-core -80.02 43 -1.86
sidechain-surf -230.16 106 -2.17
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dimer structure, results are shown in Figure S5.

Figure S5: Plexin-B1 RBD monomer to dimer entropy change shown as b-factor in structure
in top view at Left and in side view at Right. Color range from blue to white to red (with
white represents no change, blue represents entropy decreasing while red represents entropy
increasing). The head 9 residues and tail 9 residues are not shown.

As can be seen from both the left and the right figures, after binding, some regions

become partially flexible on both backbone and sidechain: residue R7 and L14 on head and

tail of β1, reside 17-19 on head of the L1 loop, D33 on tail of β2, residue 42-49 on tail of

α1, R61 and R68 on head and tail of β3. Some residues become flexible on sidechain bonds

only, like residue 8-9 on head of β1, 42-47 on tail of α1. Some residues become partially

flexible on backbone only, like residue 20-26 on tail of L1, 48-49 on tail of α1, S69 on tail of

β3, and so on. The L4 loop only becomes rigid. In correlated motions, if some regions on

protein network become rigid while other regions become more flexible, then there could be

an allosteric mechanism involved. Based on the entropy change in structure, the L4 loop,

part of α1, the L2 loop, β2, and β5 should be correlated, but anti-correlated with L1 and the

tail of β2, and some spot residues on the L1 loop, β1-3, and α1. The allosteric mechanism

should involve some residues in both the former group and the latter group.

Comparing the entropy change and order parameter change, consistent results are ob-

served. With sidechain atoms on the surface showing an increase in order parameters as

shown in the right of Figure 6, they become more rigid, thus have an entropy decreasing as

shown in the right of Figure S5. Meanwhile, the backbone atoms on the core only showed
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slight increase in S2, thus slight decrease in ∆S. The C-terminal and the L1 loop become

more flexible with a decrease in S2, thus an increase in ∆S, comparing the results shown in

the left of Figure 6 and the left of Figure S5.
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