

Figure S1 Mechanisms of balancing selection, and their relative probabilities, for n = 5, and h = 0.25. For each parameter set $(z_m, z_f, \rho_{sel}, \rho_{mut})$, 100,000 balanced polymorphisms were randomly generated using the simulation approach described in the main text and in the Fig. 4 legend, but with small mutations using $E[r] = 0.05n^{0.5}$ and large mutations using $E[r] = 0.4n^{0.5}$ (these values correspond to male-specific scaled sizes of $E[x_m] = 0.25$, and $E[x_m] = 2$, respectively).

Figure S2 Mechanisms of balancing selection, and their relative probabilities, for n = 5, and h = 0.5. Details otherwise follow those in the Figure S1 legend.

Figure S3 Mechanisms of balancing selection, and their relative probabilities, for n = 5, and h = 0.75. Details otherwise follow those in the Figure S1 legend.

Figure S4 Efficacy of balancing selection, showing results for ρ_{mut} = 0.5, and all other details described in Fig. 5 of the main text.

Figure S5 Mean alpha and \hat{q} , for n = 25, h = 0.5, and $\omega_m = \omega_f = \frac{1}{2}$. Each datapoint is based on 500,000 randomly simulated balanced polymorphisms for the given parameter set $(z_m, z_f, \rho_{sel}, \rho_{mut})$. For each parameter combination, mutation magnitudes were generated using a bivariate exponential distribution (gamma with shape parameter k = 1), with equal marginal distributions, and correlation of $\rho_{mut} = \operatorname{corr}(r_m, r_f)$. Small mutations use E[r] = 0.05, and large mutations use E[r] = 0.4 (corresponding to male-specific scaled sizes of $E[x_m] = 0.25$, and $E[x_m] = 2$, respectively).

Figure S6 Mean alpha and \hat{q} , for n = 5, h = 0.25, and $\omega_m = \omega_f = \frac{1}{2}$. Each datapoint is based on 100,000 randomly simulated balanced polymorphisms for the given parameter set $(z_m, z_f, \rho_{sel}, \rho_{mut})$. For each parameter combination, mutation magnitudes were generated using a bivariate exponential distribution (gamma with shape parameter k = 1), with equal marginal distributions, and correlation of $\rho_{mut} = \operatorname{corr}(r_m, r_f)$. Small mutations use $E[r] = 0.05n^{0.5}$, and large mutations use $E[r] = 0.4n^{0.5}$ (corresponding to male-specific scaled sizes of $E[x_m] = 0.25$, and $E[x_m] = 2$, respectively).

Figure S7 Mean alpha and \hat{q} , for n = 5, h = 0.5, and $\omega_m = \omega_f = \frac{1}{2}$. Additional details follow those in the Figure S6 legend.

Figure S8 Mean alpha and \hat{q} , for n = 5, h = 0.75, and $\omega_m = \omega_f = \frac{1}{2}$. Additional details follow those in the Figure S6 legend.