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Supplementary Information

Sections:
1. Analysis of dairy cattle data (FIG 3a).
2. Simulation based on the Drosophila melanogaster Genetic Reference Panel (FIG 3b).
3.   Derivation of expected R2 when discovery data are used both for SNP selection and prediction 
(BOX 2).
4. Analysis of height from the Framingham Heart Study (BOX 3)

1. Analysis of dairy cattle data (FIG 3a)
2,732 dairy bulls with ~509,096 genome wide SNP genotypes and with phenotype average milk 
yield of their daughters’ milk production (all bulls had at least 50 daughters), a trait with 
“heritability” ~ 0.8.  The bulls were split into a discovery sample (bulls born during or before 
2003), n = 2,458, and a validation sample (bulls born after 2003 and related to bulls in the discovery 
sample) of n=274.

The analysis generating the blue line of FIG 3a was conducted in 3 steps. Step 1: A genome-wide 
association analysis was performed in the discovery sample.  The model fitted to the data was 

eZuXb'1y n   ; where y is the vector of daughter yield deviations, 1n is a vector of 1s of 

length n sires; X is a vector allocating SNP, b is the fixed effect of the SNP, u is the vector of 
polygenic breeding values, sampled from the distribution N(0, Aσ2) where A is the average 
relationship matrix derived from pedigree (i.e. the dairy bulls are related including father-offspring, 
full- and half-sibling and more distant relatives) and e is the vector of random deviates.   The 
analysis was carried out using ASReml80. SNPs with P values of P<1x10-8, P<1x10-6, Px10-4 or 
P<10-2 were taken to the next step (estimation of effect sizes).

Step 2: Genomic predictions were performed using GBLUP36,81 to estimate genetic variances 
associated with the SNP sets identified in step 1.   The following model was fitted to the data:

eZg1y n  

where y is a vector of phenotypes (daughter yield deviations) of the discovery animals, 1n is a 

vector of 1s,   is an overall mean, Z is a design matrix allocating records to breeding values, g is a 

vector of genomic breeding values and e is a vector of random normal deviates V(e) ~ ),0( 2
eN 

, 
where 2

e is the error variance.  The variance of breeding values was 2)( gV Gg  , where G is the 

genomic relationship matrix26, using the SNP significant in the association analysis described above 
at the four different levels of significance and 2

g is the genetic variance associated with the SNP 

set. 
Step 3: breeding values (estimated genetic values which are hence the best estimate of the 
phenotypic values) for both discovery and validation individuals can be predicted as:
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Variance components were estimated with ASReml80. The proxy for accuracy of the genomic 

predictions used was ),( yg


r for the validation animals only, i.e., the correlation between true and 

estimated phenotype.  The analysis generating the red line of FIG 3c was the same as above but the 
validation sample was included in step 1 (as well as step 3). The analysis generating the orange line 
of FIG 3c was the same as above but the validation sample was included in steps 1 and 2 (as well as 
step 3). The number of SNP detected in the association analysis at the different significant levels 
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was greater when the phenotypes and genotypes of the validation individuals were included, Table 
S1.

Table S1.  Number of SNP significant in GWAS for milk production 
P-value Individuals used in association analysis

threshold Discovery only Discovery and validation 
1x10-8 631 688
1x10-6 948 1161
1x10-4 2820 3357
1x10-2 23337 25850

2. Simulation based on the Drosophila melanogaster Genetic Reference Panel (FIG 2b)
We downloaded the data reported in Mackay et al54 from http://dgrp.gnets.ncsu.edu/. The data 
comprised162 inbred lines of Drosophila melanogaster each with ~4.7M markers. We filtered the 
marker data retaining only SNPs that were biallelic, autosomal, with minor allele frequency > 0.02 
and with missingness < 0.1, leaving 1.96M autosomal SNPs. We excluded 8 lines because of 
missingness > 0.1, leaving 154 lines. Simulated phenotypes were generated from a normal 
distribution irrespective of the genotype data.  We selected the top 10 associated SNPs by a multiple 
SNP association approach in GCTA59 and predicted the phenotypes using these 10 SNPs to 
generate FIG 2b.

3. Derivation of expected R2 when discovery data are used both for SNP selection and prediction 
(BOX 2).
We derive an approximation of the squared correlation between phenotype and predicted phenotype 
from SNP data in a sample size of N unrelated individuals, when there is no correlation in the 
population between SNPs and phenotypes. Since discovery and validation sample are the same, N = 
Nd = Nv. The predictor is the sum of the product of estimated SNP effects and allele counts on m out 
of M selected SNPs. All SNPs are independent and their effect sizes are estimated in the same data 
by fitting them one at a time.

Our model is y ~ N(0,1) and SNP effect are estimated as y = mean + b*x. We can standardise x to 
have a mean of 0 and a variance of 1, so that bi = Ri. The best m SNPs are selected on test statistic 

and the predictor is calculated as ŷ  Rixi

i1

m

 . We are interested in R2  Ry, ŷ
2 , the amount of 

variance in y spuriously “explained” by the predictor. Note that var(Ri) = 1/N. Under the null 
hypothesis the i-th ranked SNP out of M tests has a p-value of pi = i/M. Using N*R2 ~ 2 (with 1 df) 
the expected value of the proportion of variance explained by the i-th SNP, when fitted by itself, is

E( Ri
2 ) = [ pi ]

2 /N,  with [ pi ]
2 the 2 value corresponding to a p-value of pi. 

Ry, ŷ
2 

covy, ŷ
2

var(ŷ)

covy, ŷ  cov(y, Rixi )  E(Ri
2 )

An alternative expression for this sum can be derived from truncation normal theory, since the Ri

values for SNPs are selected from the lower and upper tail of the distribution from all M estimates. 

http://dgrp.gnets.ncsu.edu/
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Since the variance of Ri among all M markers is 1/N and a proportion of (m/2)/M is selected from 
each tail,

Ri
2  m * var(R|selection in one tail) = (m/N) * (1 + i*t),

with t and i the truncation point and selection intensity for a proportion selected of (m/2)/M.  This 
prediction agrees very well with simulations (not shown). For the case of M = m, the prediction is 
m/N, which is also the expected R2 value from fitting m random covariates in a sample of size N
(assuming m < N) (Wishart 1931)82.

var( ŷ ) = var[�Ri * xi)]

= [ Ri
2 * var(x)] + (

j,i j


i
 cov(Ri * xi, Rj * xj)

≈ [�E( Ri
2 )] + (

j,i j


i
 cov(Ri * xi, Rj * xj)

For the second term, we use that cov(Ri*xi, Rj*xj) = RiRj cov(xi, xj). xi and xj are independent except 
that both are correlated with y. Then cov(xi, xj) = RiRj and so cov(Ri*xi, Rj*xj) = (RiRj)

2. Hence,

(cov(Ri * xi, Rj * xj) = (RiRj)
2 = [( Ri

2 )]2 - ( Ri
4 )

The second term is generally much smaller than the first one, so we can approximate (cov(Ri * xi, 

Rj *)  ≈ [ Ri
2 )]2 ≈ [(m/N) * (1 + i*t)]2, and

var( ŷ ) ≈ (m/N) * (1 + i*t) + [(m/N) * (1 + i*t)]2

= (m/N) * (1 + i*t)[1 + m/N) * (1 + i*t)]

Putting the analytical results together, 

Ry, ŷ
2 ≈ [m(1 + i*t)] / [N + m(1 + i*t)]

This result was validated by simulations for N = 500, 1000 and 5000, M = 1000, 10000 and 5000, 
and m = 10, 100 and 1000. The predicted values were within 0.005 of the average value from 100 
replicate simulations.
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4. Analysis of height from Framingham Heart Study (BOX 3)
Table S2. Impact of relatedness and stratification on FHS polygenic prediction.  For each 
relatedness threshold, we list prediction R2 for height and ancestry-adjusted height (adjusted for 10 
eigenvectors).  In the run with no close relatives, no relatedness threshold was imposed at the 
training stage but prediction R2 was computed for a subset of 1,880 individuals that had no close 
relatives in the entire data set, according to pedigree information.

# training samples 
(10-fold cross-
valid)

# validation 
samples (10-fold 
cross-valid)

prediction r2 for 
height

prediction r2 for 
anc-adjusted 
height

x=0.05 threshold 1,797 1,997 0.059 0.000
x=0.20 threshold 2,228 2,475 0.062 0.012
x=0.40 threshold 2,809 3,121 0.075 0.064
No known close 
relatives

6,691 1,880 0.129 0.185

All samples 6,691 7,434 0.144 0.263
x = maximum relationship threshold based on genome-wide genotypes.

The results in the table demonstrate a subtle issue not discussed in the main paper. Firstly, although 
the decreasing R2 as a function of relatedness cut-off (0.129, 0.075, 0.062, 0.059) could in theory be 
due to reduced sample size, the much sharper decreases in the ancestry-adjusted analysis in the 
rightmost column (0.185, 0.064, 0.012, 0.000) imply that this is due to relatedness and not reduced 
sample size. However, note that in the bottom 2 rows, ancestry adjustment actually increases 
prediction R2.  This is because when the prediction R2 is high, not adjusting for ancestry in an 
analysis that fit markers individually will overweight ancestry in the prediction, pulling the 
prediction R2 down.


