BRIEF COMMUNICATIONS

Parvalbumin interneurons mediate neuronal circuitry-neurogenesis coupling in the adult hippocampus

Juan Song, Jiaqi Sun, Jonathan Moss, Zhexing Wen, Gerald J. Sun, Derek Hsu, Chun Zhong, Heydar Davoudi, Kimberly M. Christian, Nicolas Toni, Guo-li Ming and Hongjun Song

Summary of supplementary information:

Supplementary Figs. 1-9

Supplementary Movies 1-2

Supplementary Fig. 1. Immunohistological characterization of newborn progeny during early proliferative phases of adult hippocampal neurogenesis. (**a**) A schematic diagram of the current view of progenitor subtypes and their marker expression during early phases of adult

hippocampal neurogenesis. (**b-d**) Time course analysis of marker expression by retrovirallylabelled precursors in the adult dentate gyrus. Engineered onco-retroviruses expressing GFP were stereotaxcially injected into the adult mouse dentate gyrus. Shown in (**b**) are sample confocal images of staining for GFP, MCM2, Tbr2, DCX and DAPI. Scale bar: 10 µm. Shown in (**c-d**) are quantifications of different precursor subtypes among all GFP⁺ cells at 2, 4 and 7 days post injection (dpi). Values represent mean \pm s.e.m. (n = 3-5 animals).

Supplementary Fig. 2. Electrophysiological characterization of newborn progeny during early proliferative phases of adult hippocampal neurogenesis. (**a**) Sample whole-cell voltage-clamp $(V_m = -65 \text{ mV})$ recording traces of a GFP⁺ cell in the slice acutely prepared from injected animals at 4 dpi in response to puff of GABA (10 μ M) in the presence or absence of bicuculline (100 µM). (**b**) Sample confocal images of staining of GFP, synapsin I (a synaptic vesicle protein), GAD67 (a GABAergic neuron marker), and DAPI. Scale bar: 5 µm. Arrows point to GAD67⁺synapsin⁺ puncta. Please see **Supplementary Movie 1** for 3D reconstruction and detail. (c) Sample whole-cell voltage-clamp recording traces from a GFP⁺ cell in the slice acutely prepared from injected animals at 4 dpi. Note a lack of spontaneous synaptic current (SSC) and evoked postsynaptic current (PSC) in response to low frequency field stimulation (0.1 Hz) of the dentate granule cell layer. (d) Sample whole-cell voltage-clamp recording traces of a GFP⁺ cell at 4 dpi in the acute slice in response to 5 Hz stimulation of dentate granule cell layer in the absence and presence of bicuculline (100 μM).

Supplementary Fig. 3. Synaptic inputs onto proliferating neural progeny from PV⁺ interneurons. Shown are sample confocal images of GFP⁺ newborn progeny at 4 dpi with immunostaining of synapsin, PV and a proliferation marker MCM2, and DAPI. Scale bars: 20 µm (left panel) and 10 µm (right two panels).

Supplementary Fig. 4. Immuno-EM analyses of synapses and close appositions between PV⁺ axon terminals and newborn progeny in the adult dentate gyrus. Shown in (**a-f**) are steps to identify synaptic contact between a labelled PV⁺ axon terminal and labelled newborn progeny as shown in **Fig. 1c**. Locations of the newborn progeny (NP) were identified at the light microscopic level (**a**) and followed through to the electron microscopic level (**b-f**). Electron micrographs at increasing magnifications (**b-d**) show the position of the PV+ axon terminal in relation to three of the newborn progeny (NPs 1-3). The high magnification view of the $PV⁺$ axon terminal forming a symmetrical synaptic contact (arrowheads) with the labelled newborn progeny is shown in (**d**) and **Fig. 1c**. The morphology of the NP1 cell body is lacking from (**b-d**), but is shown in (**e**) with the PV⁺ axon closely apposed. To further describe the relationship between the PV⁺ axon and NPs 1 and 2, they have been reconstructed in 3D shown in (**f**). Various contacts between PV+ axons and newborn progeny in the adult dentate gyrus are shown in (**g-l**). Shown in (**g-j**) are two examples of PV⁺ axons closely apposing the tips of filopodia extending from labelled newborn progeny (NPs 4 and 5), at low and high magnifications. Shown in (**k-l**), PV+ axon segments (arrows in **k**) are seen both in the vicinity of a labelled newborn progeny (NP6) and closely apposing its principal dendritic extension (arrowheads in **l**). Note also the presence of

cytoskeleton fibers within the dendritic extension of the newborn progeny. Shown in (**m-p**) are processes to identify synaptic contact between a labelled PV⁺ axonal terminal and an unlabelled mature granule neuron (MN) as shown in **Fig. 1e**. The location of the mature neuron (arrow) was identified at the light microscopic level (**m**) and followed through to the electron microscopic level (**n-p**). Electron micrographs at increasing magnifications (**n-p**) show the position of the PV+ axon terminal in relation to the mature neuron. The high magnification view of the PV^{+} axon terminal forming a symmetrical synaptic contact (arrowheads) with the mature neuron is shown in (**p**) and **Fig. 1e**. Newborn progeny are coloured in green, PV+ axons in red and mature granule neurons in blue. Scale bars: **a**, 10 μm; **b**, 2 μm; **c**, 0.5 μm; **d**, 0.2 μm; **e**, 2 μm; **f**, 2 μm; **g**, 0.2 μm; **h**, 0.1 μm; **i**, 0.5 μm; **j**, 0.2 μm; **k**, 2 μm; **l**, 0.5 μm; **m**, 10 μm; **n**, 2 μm; **o**, 1 μm; **p**, 0.2 μm.

Supplementary Fig. 5. Characterization of PV⁺ neuron synaptic inputs onto newborn progeny with optogenetic tools. (a-b) Targeting of PV⁺ neurons and newborn progeny with engineered AAV and onco-retrovirus, respectively. Shown in (**a**) is a schematic diagram of the experimental design. Engineered AAV with Cre-dependent expression of ChR2-YFP, NpHR-YFP or Arch-YFP was stereotaxically injected into the dentate gyrus of 5 week-old *PV-Cre* mice and retrovirus expressing RFP was stereotaxically injected 4 weeks later. Electrophysiological recordings of RFP⁺ cells were carried out in slices acutely prepared from injected animals at 3-5 dpi. Shown in (**b**) are sample confocal images of ChR2-YFP and RFP in the dentate gyrus from AAV and retroviral injected *PV-Cre* animals. Note the wide spread of YFP⁺ fibers surrounding RFP⁺ cells. Scale bars: 50 μ m (left) and 10 μ m (right). (c) Effective light-induced manipulation of PV⁺ neuron firing in slices acutely prepared from AAV injected animals. Shown are sample traces of wholecell recording of a ChR2-YFP⁺ neuron under current-clamp mode upon light-stimulation (472 nm blue light at 8 Hz, 5 ms).

Supplementary Fig. 6. Effect of optogenetic activation of PV⁺ or SST⁺ interneurons during early proliferative phases of adult hippocampal neurogenesis *in vivo*. (a) Increased NeuroD⁺ newborn progeny upon PV⁺ neurons activation. Shown on the left are sample confocal images of of NeuroD immunostaining, EdU and DAPI. Arrows point to EdU⁺NeuroD⁺ newborn progeny. Scale bar: 50 μ m. Shown on the right is a summary of quantification of EdU⁺NeuroD⁺ cells under different conditions. Values represent mean + s.e.m. (n = 3 animals; *: *P* < 0.05; Student's ttest). (**b-c**) Quantifications of percentages of EdU⁺ cells that were also MCM2⁺ (proliferating neural progeny; **b**), or were DCX⁺ (newborn neuronal progeny; **c**) at 4 dpi. Values represent mean \pm s.e.m. (n = 3-5 animals; $P > 0.10$; Student's t-test). The same groups of animals as in **Figs. 2c-d** were examined.

Supplementary Fig. 7. Effect of suppressing PV⁺, or SST⁺, interneuron activation during early phases of adult hippocampal neurogenesis *in vivo*. (**a**) A schematic diagram of experimental design for **Fig. 3a-e**. EdU (41.1 mg/kg body weight) was *i.p.* injected 4 times 2.5 hrs apart at day 0 and continuous yellow light (593 nm; constant or no light sham control) was delivered 8 hrs per day between day 1 and day 4. Animals were processed for analysis on day 1 or day 4. (**b**) Sample confocal images of NpHR-YFP and RFP in the dentate gyrus from AAV and retroviral injected PV-Cre animals. Note the wide spread of YFP⁺ fibers surrounding RFP⁺ cells. Scale bars: 50 µm (left) and 10 µm (right). (**c**) Effective light-induced suppression of PV+ neuron firing in slices acutely prepared from AAV injected animals. Shown are sample traces of whole-cell recordings of NpHR- or Arch-expressing YFP⁺ neurons under current-clamp mode upon light stimulation (593 nm yellow light; constant). A current pulse of 100 pA current was delivered to YFP⁺ neurons, and the number of action potentials was quantified with or without yellow light on. Values represent mean \pm s.e.m. (n = 6 cells; **: $P < 0.01$; Student's t-test). (d-e) Quantification

of percentages of EdU⁺ cells that were MCM2⁺ (proliferating neural progeny; **d**), or were DCX⁺ (newborn neuronal progeny; **e**) at 4 dpi. The same groups of animals as in **Figs. 3a-b** were examined. Values represent mean <u>+</u> s.e.m. (n = 3-5 animals; *P* > 0.10; Student's t-test). (f-**h**) Quantification of percentages of EdU+ cells that were MCM2+ (proliferating neural progeny, **f**), or were DCX⁺ (newborn neuronal progeny, **g**), and stereological quantification of EdU⁺NeuroD⁺ cells (**h**) at 4 dpi. The same groups of animals as in **Fig. 3h** were analyzed. Values represent mean $\frac{1}{2}$ s.e.m. (n = 3-5 animals; **: $P < 0.01$; two-way ANOVA).

Supplementary Fig. 8. PV⁺ neuron activity regulates dendritic growth of newborn neurons during adult hippocampal neurogenesis. (**a**) Presence of GABAergic synaptic inputs onto newborn neurons at 7 dpi from PV⁺ neurons. Same as in Fig. 1g, except that GFP⁺ newborn progeny at 4 and 7 dpi were examined and summaries for percentages of GFP⁺ cells recorded that exhibited PSCs (left), the mean amplitudes of PSCs (middle) and the PSC induction rate (right) are shown. The same data for 4 dpi as in **Fig. 1g** are shown for comparison. (**b-f**) Optogenetic manipulation of PV⁺ neuron activity affects dendritic development of newborn neurons. Shown in (**b**) is a schematic diagram of experimental procedure. Shown in (**c**) are sample projected confocal images of immunostaining for GFP and RFP. Scale bars: 20 μ m. Also shown are summaries of total dendritic length (**d**) and branch numbers (**e**). Each dot represents data from one individual neuron (**: *P* < 0.01; *: *P* < 0.05; two sample Kolmogorov– Smirnov test). Shown in (f) is a Sholl analysis for dendritic complexity. Values represent mean \pm s.e.m. (n = 30-33 neurons; **: *P* < 0.01; two sample Kolmogorov–Smirnov test).

Supplementary Fig. 9. Models of activity-dependent diametric regulation of adult hippocampal neurogenesis processes and two critical periods of activity-dependent survival of newborn neuronal progeny. (**a**) Diametric regulation of two sequential proliferative processes of adult hippocampal neurogenesis by PV^+ neuron activity. Shown on the left is an illustration of the dentate circuitry where entorhinal cortical inputs activate dentate granule neurons, which in turn activate PV⁺ interneurons. Shown on the right is a model of diametric regulation of quiescent neural stem cell activation and survival and maturation of their proliferative neuronal progeny: during heightened activity within dentate gyrus (top panel), activation of PV⁺ neurons promotes the survival and maturation of proliferating neuronal progenitor and inhibits quiescent neural stem cell activation; conversely, when the activity in the dentate gyrus is low (bottom panel), decreased PV⁺ neuron activity suppresses the survival of proliferating neuronal progenitors and simultaneously promotes expansion of the quiescent neural stem cell pool via symmetric cell division. (**b**) Two critical periods of activity-dependent regulation of progeny survival during adult hippocampal neurogenesis. The first phase occurs during GABAergic synaptic integration of proliferative newborn progeny involving PV⁺ local interneurons. The second phase occurs during glutamatergic synaptic integration of post-mitotic newborn neurons via a glutamate-mediated mechanism.

Supplementary Movie 1. Close association between GFP⁺ newborn progeny and GAD67⁺Synapsin I⁺ synaptic puncta in the adult dentate gyrus. Adult mice injected with oncoretroviruses to express GFP in proliferating progenitors in the adult SGZ. Shown is a surfacerendered reconstruction of a series of confocal images of the dentate gyrus (90 x 90 x 30 μ m) for immunostaining of GFP (green), GAD67 (blue) and synapsin I (red) at 4 dpi.

Supplementary Movie 2. Close association between GFP⁺ newborn progeny and PV⁺Synapsin I⁺ synaptic puncta in the adult dentate gyrus. Adult mice were injected with onco-retroviruses to express GFP in proliferating progenitors in the adult SGZ. Shown is a surface-rendered reconstruction of a series of confocal images of the dentate gyrus (90 x 90 x 30 μ m) for immunostaining of GFP (green), PV (blue) and synapsin I (red) at 4 dpi.