

Figure S1

Figure S1. Use of Protease indicator plates to monitor SpeB expression. SpeB protease activity was determined for various strains by plating 10-fold serial dilutions onto protease indicator plates and monitoring for protease activity every 4 hours. (A-G) A hyperactive SpeB expresser (Δ Vfr) exhibits SpeB activity earlier than wild type (WT) or various PBr mutants including Δ GdpP, Δ GdpP- Δ FabT, and Ω FtsH. (H) A Δ ClpX mutant displays no SpeB activity even upon extended incubation, which is comparable to SpeB-null mutants including the catalytically inactive SpeB_{C192S} mutant, or the Δ RopB transcriptional activator mutant.

Strains (alternate name)	Relevant Genotype	Mutated Loci ^a	Plasmid(s) ^b	Comment ^c	Reference
HSC5	wild type (WT)	NA			(1)
GCP688	ΔClpX	03620	pGCP666		This study
GCP751	ΔGdpP	09125	pGCP723		This study
GCP754	ΔPstS	04725	pGCP733		This study
GCP766	$\Delta GdpP-\Delta FabT$	04725, 07215	pGCP733; pGCP760		This study
GCP767	∆ClpX-∆FabT	03620, 07215	pGCP666; pGCP760		This study
GCP771	∆ManLMN	07135-45	pGCP761		This study
GCP784	ΔEbsA	03260	pGCP774		This study
GCP953	$\Delta PtsI::cat$	05585	pGCP793	CamR, allelic replacement of <i>ptsI</i> with <i>cat</i>	This study
HSC5-Spc (GCP292)	Ω Control (Ω Con)	09210-15 intergenic	pSPC18::'recF	SpcR, plasmid insertion downstream of recF	(2,3)
GCP859	Ω Hpt	00060	pGCP856	SpcR, plasmid insertion within hpt	This study
GCP862	ΩFtsH	00065	pGCP857	SpcR, plasmid insertion within <i>ftsH</i>	This study
GCP682	ΔVfr	03630	pGCP661		This study
JWR100 (GCP057)	SpeB _{C192S}	08645		Enzymatically inactive SpeB	(4)
MNN100 (GCP543)	ΔRopB	08655			(5)
GCP920	ΔGdpP	09125	pGdpP	KanR, GdpP expressed on multicopy plasmid	This study
GCP1230	$\Delta GdpP-\Delta FabT$	04725, 07215	pGdpP	KanR, GdpP expressed on multicopy plasmid	This study
GCP695	∆ClpX	03620	pClpX	KanR, ClpX expressed on multicopy plasmid	This study
GCP1232	$\Delta ClpX-\Delta FabT$	03620, 07215	pClpX	KanR, ClpX expressed on multicopy plasmid	This study

Table S1. Bacterial strains containing engineered and complemented mutations used in this study

^aLoci are based on the genome of HSC5 (1) and follow the format L897_xxxxx, where xxxxx is the number listed in the Table. NA, not applicable.

^bMutagenic plasmid (Table S3) used to delete, disrupt or alter or endogenous gene(s) in HSC5. Complementation plasmid (pGdpP or pClpX, Table S3) used to restore expression of select genes in deletion mutants. See the Experimental Procedures for details.

^cAntibiotics are abbreviated as follows: chloramphenicol (Cam), spectinomycin (Spc), kanamycin (Kan).

REFERENCES

1. Port GC, Paluscio E, Caparon MG (2013) Complete Genome Sequence of emm Type 14 Streptococcus pyogenes Strain HSC5. Genome Announc 1: 612-613.

2. Cho KH, Caparon MG (2005) Patterns of virulence gene expression differ between biofilm and tissue communities of Streptococcus pyogenes. Mol Microbiol 57: 1545-1556.

3. Cho KH, Caparon MG (2008) tRNA modification by GidA/MnmE is necessary for Streptococcus pyogenes virulence: a new strategy to make live attenuated strains. Infect Immun 76: 3176-3186.

4. Loughman JA, Caparon M (2006) Regulation of SpeB in Streptococcus pyogenes by pH and NaCl: a model for in vivo gene expression. J Bacteriol 188: 399-408.

5. Neely MN, Lyon WR, Runft DL, Caparon M (2003) Role of RopB in growth phase expression of the SpeB cysteine protease of Streptococcus pyogenes . J Bacteriol 185: 5166-74.

Revertant Parental			Parental		Auxotro	phic P _i Revertant	Consequence	
Strain	Strain	Gene	Mutation ^a	Consequence	Mutation	Codon (Alteration)	versus wild type (WT)	
GCP1091	PBr1.1	<i>pstS</i>	A -> -	Frame Shift: aa6	> A	X6K (X:AAx @ 6 -> K:AA)	Restore WT <i>pstS</i> allele	
GCP1092	PBr2.1	<i>pstS</i>	A -> -	Frame Shift: aa6	> A	X6K (X:AAx @ 6 -> K:AA)	Restore WT <i>pstS</i> allele	
GCP1093	PBr3.1	pstS	A -> -	Frame Shift: aa6	> A	X6K (X:AAx @ 6 -> K:AA)	Restore WT <i>pstS</i> allele	
GCP1094	PBr3.3	<i>pstS</i>	A -> -	Frame Shift: aa6	> A	X6K (X:AAx @ 6 -> K:AA)	Restore WT <i>pstS</i> allele	
GCP1095	PBr3.7	<i>pstS</i>	A -> -	Frame Shift: aa6	> A	X6K (X:AAx @ 6 -> K:AA)	Restore WT <i>pstS</i> allele	
GCP1096	PBr4.4	<i>pstS</i>	A -> -	Frame Shift: aa6	> A	X6K (X:AAx @ 6 -> K:AA)	Restore WT <i>pstS</i> allele	
GCP1097	PBr4.5	<i>pstS</i>	A -> -	Frame Shift: aa6	> A	X6K (X:AAx @ 6 -> K:AA)	Restore WT <i>pstS</i> allele	
GCP1098	PBr10.14	<i>pstS</i>	A -> -	Frame Shift: aa6	> A	X6K (X:AAx @ 6 -> K:AA)	Restore WT <i>pstS</i> allele	
GCP1100	PBr10.9	<i>pstA</i>	19bp -> -	Frame Shift: aa35	> C	X35R (X:xGC @ 35 -> R:cGC)	Restore <i>pstA</i> open reading frame: 18bp in frame deletion (ΔG36-41S)	
GCP1104	PBr3.2	pstC	C -> T	Premature Stop Codon: Q126*	G -> T	*126Y (*:TAG @ 126 -> Y:TAt)	Restore <i>pstC</i> open reading frame: missense mutation (Q126Y)	

^aPBr 10.9 19bp deletion is described in Table S4. - indicates absence of nucleotide (deletion).

Table S3. Plasmids used in this study

Plasmid (resistance) ^a	Features	Reference
pABG5 (Kan, Cam)	Expression vector containing <i>rofA</i> promoter, source of <i>cat</i>	(1)
pJRS233 (Erm)	Low-copy temperature-sensitive shuttle vector used for allelic replacement	(2)
pGCP213 (Erm)	High-copy temperature-sensitive shuttle vector used for allelic replacement	(3)
pSPC18 (Spc)	Integrational vector	(4)
pGCP666 (Erm)	pGCP213:: $\Delta clpX$, allelic replacement plasmid	This study
pGCP723 (Erm)	pGCP213:: \Delta gdpP, allelic replacement plasmid	This study
pGCP733 (Erm)	pJRS233:: ApstS, allelic replacement plasmid	This study
pGCP760 (Erm)	pJRS233:: \Delta f ab T, allelic replacement plasmid	This study
pGCP761 (Erm)	pGCP213:: AmanLMN, allelic replacement plasmid	This study
pGCP774 (Erm)	pGCP213:: \DebsA, allelic replacement plasmid	This study
pGCP775 (Erm)	pGCP213:: ApstI, allelic replacement plasmid, used to generate pGCP793	This study
pGCP793 (Erm, Cam)	pGCP213:: \Delta pstI :: cat, allelic replacement plasmid	This study
pGCP856 (Spc)	pSPC18:: Ωhpt , insertional disruption plasmid	This study
pGCP857 (Spc)	pSPC18:: $\Omega ftsH$, insertional disruption plasmid	This study
pGCP661 (Erm)	pGCP213:: $\Delta v fr$, allelic replacement plasmid	This study
pGdpP (Kan, Cam)	pABG5::GdpP, expression vector	(5)
pClpX (Kan, Cam)	pABG5::ClpX, expression vector	This study

^aAntibiotics are abbreviated as follows: kanamycin (Kan), chloramphenicol (Cam), spectinomycin (Spc), erythromycin (Erm).

REFERENCES

1. Granok AB, Parsonage D, Ross RP, Caparon MG (2000) The RofA binding site in *Streptococcus pyogenes* is utilized in multiple transcriptional pathways. J Bacteriol 182: 1529-40.

2. Perez-Casal J, Price JA, Maguin E, Scott JR (1993) An M protein with a single C repeat prevents phagocytosis of *Streptococcus pyogenes* : use of a temperature-sensitive shuttle vector to deliver homologous sequences to the chromosome of S. pyogenes. Mol Microbiol 8: 809-19.

3. Nielsen HV, Guiton PS, Kline KA, Port GC, Pinkner JS, et al. (2010) The metal ion-dependent adhesion site motif of the *Enterococcus faecalis* EbpA pilin mediates pilus function in catheter-associated urinary tract infection. mBio 3: e00177-00112.

4. Cho KH, Caparon MG (2005) Patterns of virulence gene expression differ between biofilm and tissue communities of *Streptococcus pyogenes*. Mol Microbiol 57: 1545-1556.

5. Cho KH, Kang SO (2013) Streptococcus pyogenes c-di-AMP phosphodiesterase, GdpP, influences SpeB processing and virulence. PLoS One 8: e69425

Table S4. Mutagenesis and complementation primers used in this study

Name (description) ^a	Sequence ^b	Template	Plasmid ^c
GP712 (ΔClpX-M13F-F1) GP713 (ΔClpX-R2) GP714 (ΔClpX-F3) GP715 (ΔClpX-M13R-R4)	tgtaaaacgacggccagt-GAGGTGTTGACAATGACTAGTATTG GTTTTGACTTGCCTTCGAC-CTGGCTTTTACCACAAAATG CATTTTGTGGTAAAAGCCAG-GTCGAAGGCAAGTCAAAAC cacacaggaaacagctatgac-ACCTATCGCTAGACCTGCTC	HSC5	pGCP666
GP822 (ΔGdpP-M13F-F1) GP823 (ΔGdpP-R2) GP824 (ΔGdpP-F3) GP825 (ΔGdpP-M13R-R4)	tgtaaaacgacggccagt-AAATATTGATTGGGATGCTATTG CAATAATAAGTGCTTCGCTTG-CATCATAATCAAATGAATGGTTTC GAAACCATTCATTTGATTATGATG-CAAGCGAAGCACTTATTATTG cacacaggaaacagctatgac-CACGTGTTTTGTCCTCATC	HSC5	pGCP723
GP807 (ΔPstS-M13F-F1) GP808 (ΔPstS-R2) GP809 (ΔPstS-F3) GP810 (ΔPstS-M13R-R4)	tgtaaaacgacggccagt-CAACAGGCTGGTACCAATTAC CTTTTTGTTACTTTTCCATCATG-GAAAGTTGATAGGACCAAAAGAC GTCTTTTGGTCCTATCAACTTTC-CATGATGGAAAAGTAACAAAAAG cacacaggaaacagctatgac-CAAAAAGGATCCTGTAATCATTG	HSC5	pGCP733
GP828 (ΔFabT-M13R-F1) GP802 (ΔFabT-R2) GP803 (ΔFabT-F3) GP829 (ΔFabT-M13F-R4)	cacacaggaaacagctatgac-CTCTTCAAATTCTTATGCTGG CCAAAAATTGATGTAGATTCCC-CAAAATCCGGTTGAAAATATC GATATTTTCAACCGGATTTTG-GGGAATCTACATCAATTTTTGG tgtaaaacgacggccagt-GCAATAGCTGCTTGAACTTTC	HSC5	pGCP760
GP846 (ΔManLMN-M13F-F1) GP847 (ΔManLMN-R2) GP848 (ΔManLMN-F3) GP849 (ΔManLMN-M13R-R4)	tgtaaaacgacggccagt-GGTGGTTTTTCTTCTGTCAAC CAAGGTGAGCAAGGATACC-GCTGGCAATAATAATACCGATAC GTATCGGTATTATTATTGCCAGC-GGTATCCTTGCTCACCTTG cacacaggaaacagctatgac-CTGTCCAAGGAATTTGAATATAATC	HSC5	pGCP761
GP865 (ΔEbsA-M13F-F1) GP866 (ΔEbsA-R2) GP867 (ΔEbsA-F3) GP868 (ΔEbsA-M13R-R4)	tgtaaaacgacggccagt-AAGAAGTAATGGAAGAGCTTGC GGCTTTTTTATCATGCTGATAAAC-CTGCCAGTGATACCTTATTTTACC GGTAAAATAAGGTATCACTGGCAG-GTTTATCAGCATGATAAAAAAGCC cacacaggaaacagctatgac-CGTGTTCGTGTCCCTATAGTATC	HSC5	pGCP774
GP871 (ΔPtsI-M13F-F1) GP872 (ΔPtsI-R2) GP873 (ΔPtsI-F3) GP874 (ΔPtsI-M13R-R4)	tgtaaaacgacggccagt-GCTTCAAAAGACTTTCACATTG CTTCTTCTGCTGTTGAACATTC-GGCTGCAATTCCTTTAAGC GCTTAAAGGAATTGCAGCC-GAATGTTCAACAGCAGAAGAAG cacacaggaaacagctatgac-GATAGTTTCCATTCACCGTTC	HSC5	pGCP775
GP886 (ΔPtsI::cat-F1) GP887 (ΔPtsI::cat-R2)	CTAAAGAGGGATTGGCATAAGACT- <i>ATGAACTTTAATAAAATTGATTTAGACAATTG</i> GTTTAAACCAACTCTTTAACCCG- <i>TTATAAAAGCCAGTCATTAGGCCTATC</i>	pABG5	pGCP793
GP966 (ΩHpt-M13F-F1) GP967 (ΩHpt-M13R-R1)	tgtaaaacgacggccagt-GCTTATGATTGGTGTATTAAAAGG cacacaggaaacagctatgac-CAGGTTTATCAAACAGTGTTGC	HSC5	pGCP856
GP968 (ΩFtsH-M13F-F1) GP969 (ΩFtsH-M13R-R1)	tgtaaaacgacggccagt-CATCTTAAGGCTGGAGATATAAAATC cacacaggaaacagctatgac-CATCATCATCATGAAAGCAG	HSC5	pGCP857
GP690 (ΔVfr-M13F-F1) GP691 (ΔVfr-R2) GP692 (ΔVfr-F3) GP693 (ΔVfr-M13R-R4)	tgtaaaacgacggccagt-GGGAAAGATGATCGAAGAATAC GACGGACTTTTTTTAGCGC-CAATGACTTTCCTTTAGAGCG CGCTCTAAAGGAAAGTCATTG-GCGCTAAAAAAAGTCCGTC cacacaggaaacagctatgac-CGTTATTATTGCTACATCAAATGC	HSC5	pGCP661
ZC341 (pClpX-F-EcoRI) ZC343 (pClpX-R-PstI)	AACT- <u>GAATTC</u> -GTAAGAGAATTATAAGAAATGGC AATGAT- <u>CTGCAG</u> -TTAAGCTGTCTCTAAAACGGG	HSC5	pClpX

^aPrimers are categorized as forward (F) or reverse (R) relative to the direction of transcript.

^bSequence is shown 5' to 3'. Uppercase sequence anneals to the HSC5 chromosome, uppercase italics sequence anneals to the *cat* gene, lowercase sequence anneals to the M13F and M13R universal primer sequences. Hyphens indicate junctions between contiguous DNA regions, underline indicates restriction sites.

^cPlasmid that was constructed using the indicated primers.

Table S5. Real-time RT-PCR primers used in this study

Name (description) ^a	Sequence
GP1021 (<i>recA</i> -F)	AGTGATGCGATTAGGAGAACG
GP1022 (recA -R)	TCGTTTTACCGGAAGACTCTG
GP1023 (<i>speB</i> -F)	CCAAGGTGTCGGTAAAGTAGG
GP1024 (<i>speB</i> - R)	AGAGCTGAAGGGTTTAGTGC
GP1027 (fabM-F)	TGACAGGTGAAGGAATTACTGC
GP1028 (fabM-R)	CCAGCATAAGAATTTGAAGAGCC
GP1029 (fabH-F)	ACGGAATGGTAATAGGTGCAG
GP1030 (fabH-R)	CACCAGCTCCATCTCCAAAA
GP1031 (<i>fabK</i> -F)	AAGAAATGGGAGCAGGATCG
GP1032 (fabK-R)	CTCACAAGCCCTGCAATTTG
GP1033 (pgsA -F)	GCGTAAGTGGCATGTAGTCAG
GP1034 (pgsA -R)	AGGCACTCATGACAAGCATC
GP1035 (cls -F)	ACCTATTACAATTATCGAGATCACCG
GP1036 (cls-R)	CCTCAAGCATTAAACCAGCATC
GP1039 (fabT-F)	AGACGAGTCAGTTTAGTGATGTC
GP1040 (<i>fabT</i> -R)	GCTAGTGGTTACTGTCCCTAAC

^aPrimers are categorized as forward (F) or reverse (R) relative to the direction of transcript.

Type (Total) ^a	Event	Number
Transitions (17)	C:G → T:A	16
	A:T → C:G	1
Transversions (14)	A:T → T:A	5
	A:T → C:G	0
	C:G → A:T	9
	C:G → G:C	0

Table S7. Transitions and Transversions of SNPs

^aAnalysis of 31 total SNPs distributed among 25 PB-resistant mutants.

Table S8. Number of Deleted or Inserted Nucleotides in InDels.

Events		Number of Altered Nucleotides ^b					
(Total) ^a	1	3	12	15	19	167	
Deletions (21)	15	1	1	2	1	1	
Insertions (3)	3	-	-	-	-	-	

 ^aAnalysis of 24 total InDels distributed among 25 PB-resistant mutants.
 ^bInverse background and font indicates an in-frame InDel (multiple of 3 nucleotides). - indicates a mutation that was not observed.

Type (Total) ^a	Event	Gene(s)	Number
Deletions (19)	9xA → 8xA	pstS (8), yfmH (1)	9
	8xA → 7xA	topA, 07750	2
	$7xA \longrightarrow 6xA$	gdpP	1
	6xA → 5xA	gdpP	1
	$3xC \longrightarrow 2xC$	topA	1
	$2xC \longrightarrow 1xC$	gdpP	1
	$3x(CGT) \longrightarrow 2x(CGT)$	ftsH	1
	$3x(ATT)^{b} \longrightarrow 1x(ATT)$	gdpP	1
	$4x(ATT)^{c} \longrightarrow 1x(ATT)$	ebsA	1
	$2x(AAGCCATTG)^{d} \longrightarrow 1x(AAGCCATTG)^{d}$) clpX	1
Insertions (3)	6xA → 7xA	gdpP	1
	4xC → 5xC	hpt	1
	$2xC \longrightarrow 3xC$	clpX	1

Table S9. Deletions or Insertions of Repetative Elements.

^a Analysis of 24 total InDels distributed among 25 PB-resistant mutants.

^b PBr 4.4 contains a 12 nucleotide deletion within *gdpP* including loss of a complete and partial copy of the 3-nucleotide repetative element ATT separated by 7-nucleotides, GAAAACT.

^c PBr 11.1 contains a 15 nucleotide deletion within *ebsA* including loss of three copies of the 3-nucleotide repetative element ATT separated by 1-nucleotide, T and 5-nucleotides, GGTCT.

^d PBr 9.21 contains a 15 nucleotide deletion within *clpX* including loss of one copy of the 9-nucleotide repetative element AAGCCATTG separated by 6-nucleotides, CCAATA.

	Gene	Premature Termination		Codon Altering/Loss				
Class	(Frequency)	Frame-shift	Nonsense	Missense	In-frame Deletion	RBS	Other (type)	
Core	$pstSCA^{a}(10)$	9	1					
	gdpP(7)	4	1	1	1			
	$fabT^{b}(6)$			4		1	1 (stop codon lost)	
	clpX(4)	1	2		1			
	$hpt^{c}(4)$	1				3		
	$manLN^{b, d}(4)$			4				
	topA (4)	2	1	1				
	<i>ptsI</i> (2)			2				
	ebsA(2)			1	1			
	<i>ftsH</i> (2)			1	1			
Guanine	deoB (1)			1				
	<i>gmk</i> (1)			1				
	guaA(1)			1				
	nupP(1)		1					
Other	yfmH(1)	1						
	agaS(1)			1				
Le	897_07750 (1)						1 (intergenic)	
	nanH(1)						1 (synonymous SNP)	
	luxR (1)			1				
	<i>fba</i> (1)			1				
	Total (55)	18	5	21	4	4	3	

Table S10. Distribution of Mutation Type in PBr Isolates.

^aAll *pstS* mutations (8/8) are identical, but were recovered in independent experiments or with different companion mutations. Mutations in *pstC* and *A* are included with *pstS*, as they are in the same putative operon and metabolic pathway.

^bA *fabT* mutation (S84L) and a *manL* mutation (N284K) were recovered twice, but in independent experiments and with different companion mutations.

^cMutation of the *hpt* RBS also affects *tilS*, as the RBS overlaps the 3' end of *tilS*.

^dGrouped together as part of the same putative operon and metabolic pathway.

^eGenes involved in metabolism of guanine, exclusive of *hpt*.

Com		Experiment ^a						
Gene	1	2	3	4	6	9	10	11
pstSCA ^b	Х	Х	Х	Х			Х	
gdpP			Х				Х	
fabT			Х			Х	Х	Х
clpX				Х		Х	Х	Х
hpt °					Х		Х	Х
manLN ^b					Х			Х
topA			Х				Х	Х
ptsI								Х
ebsA			Х					Х
ftsH			Х					
Guanine ^d				Х			Х	Х

Table S11. Distribution of Core PBr Gene Mutations Isolated from Independent Experiments.

^a Mutations in spontaneous PB-resistant isolates selected from independent cultures. ^a Mutations in spontaneous PB-resistant isolates selected from independent cultures. The individual experiments listed were conducted on different days. No PB-resistant colonies were isolated in experiments 5, 7 and 8. The "X" indicates isolation of 1 or more mutants altered in the indicated gene in that experiment.
^b Genes from the same putative operon and metabolic pathway grouped together.
^c Due to overlap, mutation of the *hpt* RBS also affects the 3' end of *tilS*.
^d Genes other than hpt predicted to be involved in guanine metabolism, including mutation of the *npt* RD(m(D)).

guaA, deoB, gmk and nupP (yufP).

Table S12. Genomic	Analysis of S.	pyogenes HSC5	Sugar Transporters.
--------------------	----------------	---------------	---------------------

Туре	Sugar	Gene(s) ^a	Transport Protein(s)	Loci ^b	Comments/Reference ^c
PTS	Glucose	ptsG	IIABC	08465	
	Mannose	manLMN	IIAB, C, D	07135-45	This Study
	Mannose/Fructose	manXYZ (ptsBCD)	IIA, B, C, D	04035-50	
	Fructose	fruA	IIABC	03490	
	Galactose	gatABC.1	IIA, B, C	07005-15	Lac1 (1)
	Lactose	lacEF	IIA, BC	08210-15	Lac2 (1)
	Sucrose	scrA	IIABC	07410	
	Trehalose	treP	IIABC	08870	
	β-Glucoside	bglF	IIABC	02590	
	Cellobiose	celABC.2	IIA, B, C	08690-700	
	Cellobiose	celABC.1 (ptcAB)	IIA, B, C	05360-75	
	Ascorbate	sgaTBA.1 (ulaABC)	IIA, B, C	0980-90	
	Ascorbate/Mannitol	sgaTB.2 bglG (ulaA)	IIA, B, C	08335-45	
	GalNAc	agaFVWD	IIA, B, C, D	02795-815	
ABC	Neu5Ac	nanBCD H	Substrate Binding, Permease 1, 2	01215-35	
	Guanosine	nupOPQ	ATP Binding, Permease 1, 2	04645-55	
	Maltose/Maltodextrin	malEFG	Substrate Binding, Permease 1, 2	05285-95	(2, 3)
Other	Multiple sugars	msmK	ATP Binding	08425	
	Malate	malP	Malate/Sodium Symporter	04180	
	Glycerol	glpF, glpF.2	Permease 1, 2	06905, 07885	5
	Glycerol-3-P	glpT	Permease	01935	

^a Gene names derive from a consensus of fully annotated *S. pyogenes* genomes, while alternative names are listed in parentheses. Inverse background and font indicate genes which were mutated in PBr isolates. HSC5, similar to most sequenced strains (15/20 total sequenced strains), lacks the 9kb region encoding MalCD (maltodextrin ABC transporter permease) as this operon appears to be unique to M1 (all four sequenced M1 strains), M2, M4, and M28.

^b Loci are in format L897_xxxx, where xxxxx is numbered.

^c Sugar transporters are predicted based on gene annotations, or established by experimental analysis as detailed in cited literature.

REFERENCES

1. Loughman JA, Caparon MG (2007) Comparative functional analysis of the lac operons in Streptococcus pyogenes. Mol Microbiol 64: 269-280.

 Shelburne SA 3rd, Fang H, Okorafor N, Sumby P, Sitkiewicz I, Keith D, Patel P, Austin C, Graviss EA, Musser JM, Chow DC (2007) MalE of group A Streptococcus participates in the rapid transport of maltotriose and longer maltodextrins. J Bacteriol 189: 2610-7.

3. Shelburne SA 3rd, Sumby P, Sitkiewicz I, Okorafor N, Granville C, Patel P, Voyich J, Hull R, DeLeo FR, Musser JM (2006) Maltodextrin utilization plays a key role in the ability of group A Streptococcus to colonize the oropharynx. Infect Immun 74: 4605-14.