



	5	15	25	35	45	55	65	75
CONSENSUS_			RRAE			SSNTAANNAD		EVGFPVRPQV
01_V2					DRL.			•••••
01_V5					XRXTX			
02_V1								
02_V5					xxx			
03_V1 03_V5					R XR			
03_V5 04 V1					YV.			
04_V1 04_V5					YV.			
04_V5 05_V1					X.			
05_V6					L.			
06 V1					0.x.x			
06 V5					0x			
00_00					*			
	85	95	105	115	125	135	145	155
CONSENSUS	PLRPMTYKGA	LDLSHFLKEK	GGLEGLIYSO		YHTQGYFPDW		YPLTFGWCFK	LVPVEPEKVE
01 V2 -	F		D			т.	F	D
01_V5	X	х	xx	x	.x	xx.	х	xx
02_V1		R		x	.N	v.		D
02_V5	X	XR	X		.x	v.		DX
03_V1								
03_V5	A.	V.MI		RI	X			QI.
04_V1					XI			
04_V5					I			
05_V1								
05_V6								
06_V1								
06_V5	•••••	xx	P	EX.	•••••	v.	x	x.x
						••		
000000000	165	175	185	195	205	50		
CONSENSUS_					ARELHPEYYK			
01_V2			ĸī.x			x.		
01_V5			KI.X			x.		
02_V1			KQ.R			N.		
02_V5 03 V1			KQ.X			N .		
03_V1 03_V5			K			••		
03_V3 04_V1			.SQGX			••		
04_V1 04_V5			.SOGX					
04_V5 05_V1			X			x.		
05_V1 05_V6			x.x			x.		
06 V1			xxx.x					
06_V1 06_V5			XX.					
00_00						••		

Supplemental Figure 2

Figure S2. Alignment of Nef amino acid consensus sequences. Consensus sequences for each subject were generated using all clones obtained at the first (visit 1 or 2) and last time points (visit 5 or 6) and aligned against the Clade B consensus (top line). Dots denote positions with 100% identity with the Clade B consensus among all clones, and "X" denotes a position with at least one polymorphic allele in the quasispecies population. Dashes indicate positions of insertions relative to the consensus.

Supplemental Figure 3

Figure S3. Relationship between CTL Response and Preservation of Nef-mediated MHC Class I Downregulation. The difference in MHC Class I downregulation between peak viremia and viral set point (Delta MHC CLASS I downregulation) was compared with the total CTL response measured in number of positive peptide pools. There was a trend (p=0.090) for a positive association between number of CTL responses and preservation of MHC Class I downregulation.