
Experimental Supporting Information  

General information: All reactions were performed under an argon atmosphere with stirring, unless 

otherwise noted. Bisoxazoline ligand 4,5-dihydro-2-(2-(4,5-dihydrooxazol-2-yl)propan-2-yl)oxazole, 

(achiral box) used to generate racemic samples for HPLC analysis, was synthesized using our previously 

reported procedure.1  The 1,1-diphenylethylene 13a was purchased from Aldrich and used without further 

purification.  The 4,4'-(ethene-1,1-diyl)bis(methoxybenzene) 13b, 4,4'-(ethene-1,1-

diyl)bis(fluorobenzene) 13c, 3-methylene-2,3-dihydrobenzofuran 25 and 2-ethyl-3-methylene-1-

tosylindoline 27 alkene acceptors were synthesized according to a previously reported procedures.2  The 

MnO2 used was obtained from Aldrich as an activated, <5 μm powder of 85% purity and used out of the 

bottle as supplied.  All other reagents were purchased from Aldrich, Acros or Strem.   Solvents were 

purified using a solvent filtration system purchased from Contour Glass Co (Irvine, California).  PhCF3 

was purchased from Acros and distilled from CaH2 prior to use. 1H NMR spectra were recorded at 300, 

400 or 500 MHz using Varian instruments. 13C NMR data were recorded at 75 MHz. Coupling constants 

(J) are in hertz. Abbreviations used are s = singlet, d = doublet, t = triplet, m = multiplet, ABq = AB 

quartet, AX = AX quartet and br = broad. IR spectra were taken neat using a Nicolet-Impact 420 FTIR. 

Wave numbers in cm-1 are reported for characteristic peaks. High resolution mass spectra were obtained 

at SUNY, Buffalo’s mass spec. facility on a ThermoFinnigan MAT XL spectrometer. Melting points 

were obtained on an electrothermal melting point apparatus and are reported uncorrected. X-ray structures 

were obtained at the X-ray crystallographic facilities at the University of Rochester. Optical rotations 

were obtained using a Rudolph Autopol I Polarimeter fitted with a micro cell with a 1 dm path length. 

Enantiomeric excess was determined by high performance liquid chromatography (HPLC) using 

Chiralpak AD-RH or Regis (S, S)-Whelk chiral analytical column (UV detection at 254nm). 

 

Synthesis of substrates: 

Substrates 1a, 1b, 3, 5, 7, 9, 17, 20 and 22 were synthesized as previously reported.3,4,5  Ethyl 

cyclopentane carboxylate was synthesized as previously reported.6  Substrate 15 was synthesized via the 



following route, adapted from a previously reported procedure7, starting from the commercially available 

cyclopentane carboxylic acid: 

  

(1-Allylcyclopentyl)methanol  (15) 

Ethyl cyclopentane carboxylate was obtained via the previously reported method6:  Cyclopentane 

carboxylic acid (2.85 mL, 3.00 g, 26.3 mmol) was dissolved in absolute ethanol (14 mL) at room 

temperature.  To this mixture was added conc. sulfuric acid (0.33 mL) and then the reaction was refluxed 

for 5 hours.  The reaction mixture was allowed to cool to room temperature and then excess ethanol was 

removed under reduced pressure and the remaining oil was slowly poured over crushed ice with stirring.  

The ester separated from the mixture as an oil and was isolated with a separatory funnel.  The aqueous 

layer was then extracted with chloroform (2 x 20 mL). The combined organic layers were washed with 

water, sat. sodium bicarbonate and water (1 x 50 mL each).  The combined organics were dried over 

anhydrous magnesium sulfate.  Removal of solvents gave ethyl cyclopentane carboxylate quantitatively 

as a pale yellow, sweetly fragrant, volatile oil.  

Adapted from a previous reported procedure7:  Diisopropylamine (4.46 mL, 31.6 mmol, 1.2 equiv) was 

dissolved in THF (26 mL) at room temperature before placing the flask in a -78 °C bath.  After stirring 

the mixture for 10 minutes 1.6 M nBuLi (19.7 mL, 31.5 mmol, 1.2 equiv) was added dropwise via syringe 

to the reaction mixture.  After stirring the mixture for an additional 30 minutes ethyl cyclopentane 

carboxylate (3.74 g, 26.3 mmol, 1.0 equiv) was added dropwise via syringe.  After stirring the mixture for 

an additional 30 minutes, allylbromide (2.29 mL, 26.3 mmol, 1.0 equiv) was added dropwise via syringe.  

The reaction mixture was then left to come to room temperature and stir overnight.  The reaction was then 

quenched by the slow addition of sat. ammonium chloride solution (25 mL) and the organic layer was 

separated.  The organics were then dried over anhydrous magnesium sulfate and the solvent removed in 

vacuo  to give S1 (3.59 g) in 75% crude yield as a clear oil. 



Lithium aluminum hydride (2.10 g, 55.3 mmol, 2.8 equiv) was added in five portions to a solution of S1 

(3.59 g, 19.7 mmol, 1 equiv) in THF (105 mL) at 0 °C.  The mixture was then stirred and allowed to 

come to room temperature overnight.  The reaction was quenched with sat. ammonium chloride and the 

mixture was extracted with ethyl acetate (3 x 50 mL).  The combined organics were dried over anhydrous 

magnesium sulfate and after filtration the solvents were removed in vacuo to give an oily residue which, 

when subjected to flash chromatography using hexanes-EtOAc  83 : 17, gave the pentenol 15 (1.36 g) in 

49% yield as a clear oil.  1H NMR (300 MHz, CDCl3) δ 5.95-5.77 (m, 1H), 5.12-5.03 (m, 2H), 3.40 (s, 

2H), 2.16 (d, J = 6.9 Hz, 2H), 1.64-1.39 (m, 8H); 13C NMR (75 MHz, CDCl3) δ 136.2, 116.9, 69.0, 47.2, 

42.0, 34.1, 25.2;  IR (neat): 3361, 3075, 2951, 2868, 1639, 1453, 1039, 994, 912 cm-1; LRMS (CI) calc'd 

for [M-OH]+ C9H15: 123.2, found 123.2. 

 

Representative procedure for the Cu(OTf)2-catalyzed enantioselective intramolecular 

carboetherification:  
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(3aR,9aR)-3a-Benzyl-2,2-diphenyl-2,3,3a,4,9,9a-hexahydronaphtho[2,3-b]furan  (2a) 

*Excess moisture can adversely affect the enantioselectivity of these reactions.  Care should be taken to 

maintain anhydrous conditions.  Cu(OTf)2 should either be obtained from a glove box or lightly flame 

dried under vacuum before use.  Cu(OTf)2 (9.4 mg, 0.026 mmol, 20 mol %) and (S,S)-tBu-Box  ligand 

(9.6 mg, 0.033 mmol, 25 mol %) were placed in a 12 mL glass reaction tube with a stir bar and PhCF3 

(1.0 mL).  The tube was then flushed with argon, capped and stirred at 60 °C for 2 h.  The reaction 

mixture was allowed to cool to room temperature before K2CO3 (18.1 mg, 0.131 mmol, 1 equiv) and 

MnO2 (33.9 mg, 0.390 mmol, 3 equiv) were added.   Alcohol 1a (54.4 mg, 0.130 mmol) dissolved in 

PhCF3 (0.30 mL) was then added to the mixture followed by flame activated 4Å mol. sieves (~30 mg).  

The tube was flushed with argon again, capped and stirred at 100 °C for 24 h.  The reaction was then 



allowed to cool to room temperature before being diluted with EtOAc (3 mL) and filtered through a pad 

of Celite (~5 g).  The Celite was then rinsed with EtOAc (3 x 30 mL) and the combined filtrate was 

concentrated in vacuo. The residue was purified by prep TLC (SiO2, 9 : 1 hexanes/Et2O) to afford 51 mg 

(95% yield) of 2a as a clear oil.  *The same procedure is followed using the 4,5-dihydro-2-(2-(4,5-

dihydrooxazol-2-yl)propan-2-yl)oxazole (achiral box), in order to generate racemic products used for 

analytical HPLC analysis.  1H NMR data matched that previously reported by Chemler.3  1H NMR (400 

MHz, CDCl3) δ 7.65 (d, J = 7.6 Hz, 2H), 7.47 (t, J = 7.2 Hz, 2H), 7.35-7.20 (m, 7H), 7.10-7.04 (m, 3H), 

7.03-6.99 (m, 3H), 6.70-6.67 (m, 2H), 4.40-4.38 (m, 1H), 3.13 (dd, J = 15.0, 3.2 Hz, 1H), 2.97 (dd, J = 

13.2, 2.0 Hz, 1H), 2.73 (dd, J = 15.2, 3.2 Hz, 1H), 2.63 (d, J = 12.8 Hz, 1H), 2.48-2.44 (m, 2H), 2.38 (dd, 

J = 13.6, 1.6 Hz, 1H), 2.01 (d, J = 12.8 Hz, 1H); [α]D
19 = 98.9° (c = 0.14, CHCl3);  ee = >95%, 

determined by HPLC analysis [Chiralpak AD-RH, 57 : 43 MeCN/H2O, 0.20 mL/min, λ = 254 nm, 

t(major) = 138.65 min, t(minor) = 153.09 min].   

 

 (3aR,9aR)-7-Chloro-3a-(4-chlorobenzyl)-2,2-diphenyl-2,3,3a,4,9,9a-hexahydronaphtho[2,3-b]furan  

(2b) 

1H NMR data matched that previously reported by Chemler.3   

Tetrahydronaphthofuran 2b was purified by flash chromatography 

(SiO2, 100 : 0 - 80 : 20 gradient hexanes/EtOAc) to give (47 mg) 

obtained from the catalytic carboetherification of 1b as a white solid (95% yield), mp 137-139 °C.  1H 

NMR (400 MHz, CDCl3) δ 7.60 (dd, J = 8.4, 1.6 Hz, 2H), 7.44 (t, J = 7.6 Hz, 2H), 7.33 (d, J = 7.2 Hz, 

1H), 7.28-7.23 (m, 3H), 7.19 (dd, J = 8.4, 2.4 Hz, 1H), 7.07-7.04 (m, 3H), 6.99-6.96 (m, 3H), 6.75-6.72 

(m, 2H), 4.34 (t, J = 3.6 Hz, 1H), 3.10 (dd, J = 15.2, 3.2 Hz, 1H), 2.90 (d, J = 13.2 Hz, 1H), 2.66 (dd, J = 

15.2, 3.2 Hz, 1H), 2.46 (ABq, JAB = 14.0, Δν = 29.5 Hz, 2H), 2.38 (ABq, JAB = 13.2, Δν = 23.9 Hz, 2H), 

1.99 (d, J = 13.2 Hz, 1H); [α]D
19 = 112.1° (c = 0.43, CHCl3);  ee = >95%, determined by HPLC analysis 

[Chiralpak AD-RH, 62 : 38 MeCN/H2O, 0.20 mL/min, λ = 254 nm, t(major) = 178.78 min, t(minor) = 

197.52 min].   
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The X-ray crystal structure of 2b (CCDC 985356) was used to establish 3aR, 9aR stereochemistry (C32 

and C33 below, respectively). The structure was obtained by William W. Brennessel at the 

Crystallographic Facility at the University of Rochester. 

 

 

 

(3aR,9aR)-3a-Benzyl-2,3,3a,4,9,9a-hexahydronaphtho[2,3-b]furan  (4)   

Tetrahydronaphthofuran 4 was purified by flash chromatography (SiO2, 100 : 0 - 80 : 

20 gradient hexanes/EtOAc) to give (28 mg) obtained from the catalytic 

carboetherification of 3 as a clear oil (71% yield).  1H NMR data matched that 

previously reported by Chemler.3 1H NMR (400 MHz, CDCl3) δ 7.35-7.07 (m, 9H), 4.12 (t, J = 4.4 Hz, 

1H), 3.68-3.58 (m, 2H), 2.89 (dd, J = 15.2, 4.0 Hz, 1H), 2.80-2.69 (m, 3H), 2.57 (ABq, JAB = 14.8, Δν = 

52.8 Hz, 2H), 2.05-1.99 (m, 1H), 1.50-1.42 (m, 1H);  [α]D
19.0 = 7.3° (c = 0.55, CHCl3);  ee = 70%, 

determined by HPLC analysis [Regis (S, S)-Whelk, 95 : 5 Hex./iPrOH, 1.00 mL/min, λ = 254 nm, 

t(major) = 4.57 min, t(minor) = 3.97 min].  

O (4)



    

(1S,4R)-7-Chloro-1-(4-chlorophenyl)-1,2,4,5-tetrahydro-1,4-methanobenzo[d]oxepine (6)  

Tetrahydrofuran 6 was purified by Prep TLC (SiO2, 100 : 0 - 90 : 10 gradient 

hexanes/EtOAc) to give (34 mg) obtained from the catalytic carboetherification of 

5 (reaction run at 120 °C) as a white solid (77% yield), mp 121-123 °C.  1H NMR 

data matched that previously reported by Chemler.3 1H NMR (400 MHz, CDCl3) 

δ 7.38 (d, J = 8.8 Hz, 2H), 7.17-7.12 (m, 3H), 6.92 (dd, J = 8.4, 2.4 Hz, 1H), 6.40 (d, J = 8.4 Hz, 1H), 

4.81-4.78 (m, 1H), 4.26 (ABq, JAB = 7.2, Δν = 43.0 Hz, 2H), 3.09 (s, 2H), 2.47 (d, J = 10.8 Hz, 1H), 2.33 

(dd, J = 11.6, 6.8 Hz, 1H);  [α]D
19.6 = -64.8° (c = 0.50, CHCl3).  ee = 82%, determined by HPLC analysis 

[Regis (S, S)-Whelk, 95 : 5 Hex./iPrOH, 1.00 mL/min, λ = 254 nm, t(major) = 6.35 min, t(minor) = 5.53 

min].   

  

(1S,4R)-4-Methyl-1-phenyl-1,2,4,5-tetrahydro-1,4-methanobenzo[d]oxepine   (8) 

Tetrahydrofuran 8 was purified by Prep TLC (SiO2, 100 : 0 - 90 : 10 gradient 

hexanes/EtOAc) to give (36 mg) obtained from the catalytic carboetherification of 7 

(reaction run at 120 °C) as a white solid (99% yield), mp 126-128 °C. 1H NMR data 

matched that previously reported by Chemler.3 1H NMR (400 MHz, CDCl3) δ 7.43-7.39 (m, 2H), 7.36-

7.31 (m, 1H), 7.24-7.19 (m, 2H), 7.15-7.11 (m, 2H), 6.98-6.94 (m, 1H), 6.51 (d, J = 8.0 Hz, 1H), 4.34 

(ABq, JAB = 7.2, Δν = 12.5 Hz, 2H), 3.10 (s, 2H), 2.38 (AXq, JAX = 10.8, Δν = 143.6 Hz, 2H), 1.55 (s, 

3H);  [α]D
19.4 = -70.5° (c = 0.91, CHCl3);  ee = 84%, determined by HPLC analysis [Chiralpak AD-RH, 

75 : 25 MeCN/H2O, 1.00 mL/min, λ = 254 nm, t(major) = 4.65 min, t(minor) = 6.53 min].    

 

(1S,4S,5S)-5-Methyl-1-phenyl-1,2,4,5-tetrahydro-1,4-methanobenzo[d]oxepine   (10) 

Tetrahydrofurans 10 and 11 were purified by Prep TLC (SiO2, 95 : 5 hexanes/Et2O) to give (37 mg) 

obtained from the catalytic carboetherification of 9 (reaction run at 120 °C) as a clear oil [96% yield, 10 : 

11 (1 : 1)]. They were separated by prep HPLC using 98 : 2 Hex./EtOAc (10 eluted first) and 10 was a 
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white crystalline solid, mp 179-181 °C.  1H NMR data matched that previously reported 

by Chemler.3 1H NMR (400 MHz, CDCl3) δ 7.42-7.27 (m, 4H), 7.24-7.21 (m, 2H), 7.16 

(td, J = 7.2, 1.6 Hz, 1H), 6.95 (t, J = 8 Hz, 1H), 6.47 (dd, J = 8.0, 1.6 Hz, 1H), 4.51 (dd, J 

= 6.4, 2.4 Hz, 1H), 4.30 (ABq, JAB = 6.8, Δν = 20.1 Hz, 2H), 3.16-3.11 (m, 1H), 2.58 (d, J = 10.8 Hz, 1H), 

2.41 (dd, J = 11.2, 6.4 Hz, 1H), 1.46 (d, J = 7.2 Hz, 3H); [α]D
19.7 = -36.1° (c = 0.19, CHCl3);  ee = 94%, 

determined by HPLC analysis [Regis (S, S)-Whelk, 98 : 2 Hex./iPrOH, 0.20 mL/min, λ = 254 nm, 

t(major) = 25.74 min, t(minor) = 23.91 min].  The relative stereochemistry of 10 was assigned by NOE 

and process of elimination (it was not 11).  Saturation of Ha revealed a strong enhancement of Hb but 

also a weak enhancement of Hd.  
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 (1S,4S,5R)-5-Methyl-1-phenyl-1,2,4,5-tetrahydro-1,4-methanobenzo[d]oxepine   (11) 

Tetrahydrofuran 11 was obtained as a clear oil.  1H NMR data matched that previously 

reported by Chemler.3 1H NMR (400 MHz, CDCl3) δ 7.43-7.31 (m, 4H), 7.25-7.20 (m,  

2H), 7.15 (td, J = 7.2, 1.2 Hz, 1H), 6.95 (t, J = 8.4 Hz, 1H), 6.48 (d, J = 8.0 Hz, 1H), 

4.50 (dd, J =  6.4, 2.8 Hz, 1H), 4.26 (ABq, JAB = 7.2, Δν = 14.74 Hz, 2H), 3.19-3.14 (m, 

1H), 2.61 (d, J =  11.6 Hz, 1H), 2.20 (dd, J =  11.2, 6.8 Hz, 1H), 1.31 (d, J =  6.8 Hz, 3H); [α]D
20.0 = -

30.7° (c = 0.29, CHCl3);  ee = 94%, determined by HPLC analysis [Regis (S, S)-Whelk, 95 : 5 

Hex./iPrOH, 1.00 mL/min, λ = 254 nm, t(major) = 7.26 min, t(minor) = 5.22 min].  The relative 

stereochemistry of 11 was assigned by NOE.  Saturation of Ha on diastereomer III-11 showed strong 

enhancements of Hb and Hd but no enhancement of Hd. 
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Representative procedure for the Cu(OTf)2-catalyzed enantioselective intermolecular 

carboetherification:  

 

(R)-3-(3,3-Diphenylallyl)-2-oxaspiro[4.4]nonane   (16) 

*Excess moisture can adversely affect the enantioselectivity of these reactions.  Care should be taken to 

maintain anhydrous conditions.  Cu(OTf)2 should either be obtained from a glove box or lightly flame 

dried under vacuum before use.  Cu(OTf)2 (25.0 mg, 0.069 mmol, 20 mol %) and (S,S)-tBu-Box  ligand 

(25.7 mg, 0.087 mmol, 25 mol %) were placed in a 12 mL glass reaction tube equipped with a stir bar.  

The mixture was dissolved in PhCF3 (1.5 mL) and the tube was flushed with argon and capped.  The 

mixture was stirred at 60 °C for 2 h then allowed to cool to room temperature.  K2CO3 (47.3 mg, 0.342 

mmol, 1 equiv), MnO2 (90.1 mg, 1.03 mmol, 3 equiv) and 1,1-diphenylethylene 13a (183 μL, 1.03 mmol, 

3 equiv) were added to the reaction mixture.   Alcohol 15 (48.3 mg, 0.342 mmol) was dissolved in PhCF3 

(0.5 mL) and added to the tube followed by additional PhCF3 (1.4 mL).  Flame-dried 4Å mol. sieves (~70 

mg) were added directly to the tube while still hot.  The tube was flushed with argon and capped and the 

reaction mixture was stirred at 100 °C for 16 h.  The reaction was then allowed to cool to room 

temperature before being diluted with EtOAc (3 mL) and vacuum filtered through a pad of Celite (~5 g).  

The Celite was then rinsed with EtOAc (3 x 30 mL) and the combined filtrate was concentrated in vacuo. 



The residue was purified by Prep TLC (SiO2, 92 : 8 hexanes/EtOAc) to give (41 mg) of 16 as a pale 

yellow oil (90% yield).  [α]D
19.0 = -8.5° (c = 0.56, CHCl3);  ee = 82%, determined by HPLC analysis 

[Chiralpak AD-RH, 60 : 40 MeCN/H2O, 0.75 mL/min, λ = 254 nm, t(major) = 33.07 min, t(minor) = 

29.39 min]; 1H NMR (400 MHz, CDCl3) δ 7.38-7.33 (m, 2H), 7.32-7.30 (m, 1H), 7.26-7.17 (m, 7H), 6.14 

(t, J = 7.6 Hz, 1H), 4.09-4.02 (m, 1H), 3.58 (ABq, JAB = 8.0, Δν = 30.2 Hz, 2H), 2.45 (dt, J = 7.2, 6.8 Hz, 

1H), 2.33 (dt, J = 7.6, 6.0 Hz, 1H), 1.88 (dd, J = 12, 6.4 Hz, 1H), 1.66-1.43 (m, 9H); 13C NMR (75 MHz, 

CDCl3) δ 143.2, 142.6, 140.0, 129.9, 128.2, 128.0, 127.2, 126.9, 125.6, 79.1, 78.6, 50.9, 44.8, 37.6, 36.7, 

36.2, 24.7; IR (neat): 3056, 3024, 2950, 2859, 1599, 1494, 1444, 1362, 1052, 760 cm-1; HRMS (EI)  

calc'd for [M·]+  C23H26O: 318.1986, found 318.1978. 

 

                                    

(S)-2-(3,3-Diphenylallyl)tetrahydrofuran   (14) 

The reaction followed the same procedure as above except this reaction was run at 0.08 M with respect to 

substrate, as opposed to the 0.1 M, in order to eliminate an undesired side product.  Upon scale-up to 

0.526 mmol of substrate this side product is unavoidable.  The residue was purified by flash 

chromatography (SiO2, 100 : 0 - 90 : 10 gradient hexanes/Et2O) to afford 35 mg (92% yield) of 14 as a 

pale yellow oil.     [α]D
18.0 = -7.4° (c = 0.39, CHCl3);  ee = 82%, determined by HPLC analysis [Chiralpak 

AD-RH, 60 : 40 MeCN/H2O, 0.75 mL/min, λ = 254 nm, t(major) = 13.71 min, t(minor) = 12.69 min]; 1H 

NMR (400 MHz, CDCl3) δ 7.37 (t, J = 7.2 Hz, 2H), 7.32-7.27 (m, 1H), 7.25-7.18 (m, 7H), 6.16 (t, J = 7.6 

Hz, 1H), 3.97-3.83 (m, 2H), 3.73 (td, J = 7.0, 6.8 Hz, 1H), 2.42 (dt, J = 7.2, 6.8 Hz, 1H), 2.35-2.28 (m, 

1H), 2.01-1.93 (m, 1H), 1.89-1.82 (m, 1H), 1.54-1.45 (m, 1H); 13C NMR (75 MHz, CDCl3) δ 143.2, 

142.6, 140.1, 129.9, 128.2, 128.0, 127.3, 126.9, 125.7, 79.0, 67.8, 35.8, 30.9, 25.7; IR (neat): 3040, 3012, 



2968, 2850, 1495, 1442, 1361, 1076, 759 cm-1; HRMS (EI)  calc'd for [M·]+  C19H20O: 264.1516, found 

264.1509. 

 

(S)-5-(3,3-Diphenylallyl)-2,2-diphenyltetrahydrofuran   (18a) 

Tetrahydrofuran 18a was purified by flash chromatography (SiO2, 100 : 0 - 90 : 10 

gradient hexanes/Et2O) to give (55 mg) obtained from the catalytic 

carboetherification of 17 and 13a as a clear oil (90% yield).  [α]D
19.0 = 8.2° (c = 

0.54, CHCl3);  ee = >95%, determined by HPLC analysis [Chiralpak AD-RH, 80 : 20 to 90 : 10 gradient 

MeOH/H2O, 0.10 mL/min, λ = 254 nm, t(major) = 229.49 min, t(minor) = 225.11 min]; 1H NMR (400 

MHz, CDCl3) δ 7.46-7.40 (m, 4H), 7.36-7.14 (m, 16H), 6.22 (t, J = 7.2 Hz, 1H), 4.26-4.20 (m, 1H), 2.65-

2.40 (m, 4H), 2.01-1.92 (m, 1H), 1.72-1.63 (m, 1H); 13C NMR (75 MHz, CDCl3) δ 147.1, 146.7, 143.1, 

142.7, 140.1, 130.0, 128.2, 128.1, 128.0, 127.9, 127.3, 126.9, 126.6, 126.5, 125.8, 88.1, 78.7, 38.8, 36.3, 

30.9; IR (neat): 3056, 3024, 2965, 1598, 1493, 1446, 1362, 1228, 1053, 915, 885, 759 cm-1;  HRMS (EI)  

calc'd for [M·]+  C31H28O: 416.2139, found 416.2135. 

 

(R)-4,4-Bis(4-chlorophenyl)-2-(3,3-diphenylallyl)tetrahydrofuran  (19) 

Tetrahydrofuran 19 was purified by flash chromatography (SiO2, 100 : 0 - 

80 : 20 gradient hexanes/EtOAc) to give (53 mg) obtained from the 

catalytic carboetherification of 5 and 13a as a pale orange oil (80% yield).  

[α]D
19.6 = -29.9° (c = 0.57, CHCl3);  ee = 80%, determined by HPLC 

analysis [Chiralpak AD-RH, 80 : 20 MeCN/H2O, 1.00 mL/min, λ = 254 nm, t(major) = 19.49 min, 

t(minor) = 13.81 min];  1H NMR (300 MHz, CDCl3) δ 7.36-7.30 (m, 3H), 7.27-7.13 (m, 13H), 7.07 (d, J 

= 9.0 Hz, 2H), 6.09 (t, J = 7.8 Hz, 1H), 4.27 (AXq, JAX = 9.0, Δν = 122 Hz, 2H), 4.19-4.08 (m, 1H), 2.58-

2.35 (m, 3H), 2.26 (dd, J = 16.4, 12.4 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 144.3, 143.8, 142.3, 139.8, 

132.5, 132.3, 129.8, 128.8, 128.7, 128.5, 128.4, 128.3, 128.2, 128.1, 127.2, 127.1, 127.0, 124.7, 78.5, 55.3, 

O

Ph

Ph

Cl

Cl
(19)



44.2, 36.0, 29.7; IR (neat): 3058, 3021, 2958, 2922, 2854, 1598, 1494, 1445, 1261, 1095, 1013, 820 cm-1; 

HRMS (EI)  calc'd for [M·]+  C31H26Cl2O: 484.1333, found 484.1355. 

 

(S)-5-(3,3-Diphenylallyl)-2,2-dimethyltetrahydrofuran (21) 

Tetrahydrofuran 21 was purified by flash chromatography (SiO2, 95: 5 isochratic 

hexanes/ether) to give (62 mg) obtained from the catalytic carboetherification of 20 

and 13a as a colorless oil (84% yield). [α]D
20 = -21.74° (c = 1.0, CHCl3); ee = 96%, 

determined by HPLC [Chiralpak AD-RH, 60 : 40 CH3CN/H2O, 0.5 mL/min, λ = 254 nm, t(major) =  

22.96 min, t(minor) =  21.41 min]; 1H NMR (400 MHz, CDCl3): δ 7.38-7.19 (m, 10H), 6.16 (t, J = 7.6 Hz, 

1H), 4.10-4.04 (m, 1H), 2.49-2.42 (m, 1H), 2.34-2.26 (m, 1H), 2.05-1.98 (m, 1H), 1.74-1.60 (m, 3H), 

1.25 (s, 3H), 1.24 (s, 3H); 13C NMR (75 Hz, CDCl3): δ 143.1, 142.7, 140.1, 129.9, 128.1, 128.0, 127.2, 

126.9, 125.6, 80.6, 78.2, 38.5, 36.5, 31.4, 29.2, 28.1; IR (neat): 3055, 3024, 2966, 1494, 1444, 1364, 1144, 

1073, 760, 700 cm-1; HRMS (EI) calcd for [M]+ C21H24O: 292.1822, found: 292.1826. 

 

 (2S,5S)-2-(But-3-en-1-yl)-5-(3,3-diphenylallyl)tetrahydrofuran   (23) 

Tetrahydrofurans 23 and 24 were purified by Prep TLC (SiO2, 100 : 0 to 95 : 

5 gradient hexanes/EtOAc) to give (42 mg) obtained from the catalytic 

carboetherification of 22 and 13a as a clear oil [90% yield, 23 : 24 (6 : 1)].  

They were separated by prep HPLC using 98 : 2 Hex./EtOAc (23 eluted first).  [α]D
20.1 = -9.9° (c = 0.28, 

CHCl3);  ee = 86%, determined by HPLC analysis [Chiralpak AD-RH, 60 : 10 MeCN/H2O, 0.75 mL/min, 

λ = 254 nm, t(major) = 25.31 min, t(minor) = 21.43 min]; 1H NMR (400 MHz, CDCl3) δ 7.38-7.28 (m, 

4H), 7.25-7.17 (m, 6H), 6.13 (t, J = 7.6 Hz, 1H), 5.89-5.78 (m, 1H), 5.02 (d, J = 17.2 Hz, 1H), 4.95 (d, J 

= 12.4 Hz, 1H), 4.10-4.03 (m, 1H), 3.96-3.89 (m, 1H), 2.42 (dt, J = 6.8, 6.4 Hz, 1H), 2.28 (dt, J = 6.8, 6.4 

Hz, 1H), 2.17-1.96 (m, 4H), 1.75-1.63 (m, 1H), 1.56-1.44 (m, 3H); 13C NMR (75 MHz, CDCl3) δ 143.2, 

142.7, 140.1, 138.5, 129.9, 128.2, 128.0, 127.3, 126.9, 125.7, 114.4, 78.4, 78.3, 36.1, 35.1, 31.9, 31.6, 

30.5; IR (neat): 3057, 3022, 2928, 2857, 1491, 1438, 1361, 1071, 907, 755 cm-1; HRMS (EI)  calc'd for 

O

Ph

Ph
(23)



[M·]+ C23H26O: 318.1978, found 318.1978. The relative stereochemistry of 23 was assigned by process of 

elimination (it was not 24).   

 

(2R,5S)-2-(But-3-en-1-yl)-5-(3,3-diphenylallyl)tetrahydrofuran   (24) 

Tetrahydrofuran 24 was obtained as a clear oil. [α]D
19.2 = -2.6° (c = 0.16, 

CHCl3).  ee = 97%, determined by HPLC analysis [Chiralpak AD-RH, 60 : 

40 MeCN/H2O, 0.75 mL/min, λ = 254 nm, t(major) = 21.61 min, t(minor) = 

23.11 min];  1H NMR (400 MHz, CDCl3) δ 7.38-7.34 (m, 2H), 7.36-7.29 (m, 2H), 7.25-7.18 (m, 6H), 

6.14 (t, J = 7.2 Hz, 1H), 5.88-5.79 (m, 1H), 5.02 (d, J = 17.2 Hz, 1H), 4.95 (d, J = 8.0 Hz, 1H), 3.96-3.90 

(m, 1H), 3.86-3.81 (m, 1H), 2.43 (dt, J = 6.8, 6.4 Hz, 1H), 2.31 (dt, J = 7.2, 6.4 Hz, 1H), 2.17-1.90 (m, 

4H), 1.72-1.65 (m, 1H), 1.56-1.44 (m, 4H); 13C NMR (75 MHz, CDCl3) δ 143.2, 142.7, 140.1, 138.6, 

130.0, 128.2, 128.0, 127.3, 126.9, 125.7, 114.4, 110.0, 78.9, 78.8, 36.2, 35.3, 31.0, 30.5, 29.8; IR (neat): 

3062, 3025, 2916, 2856, 1495, 1446, 1367, 1078, 998, 907, 755 cm-1; HRMS (EI)  calc'd for [M·]+ 

C23H26O: 318.1978, found 318.1973.  The relative stereochemistry of 24 was assigned by NOE.  In the 

first experiment, saturation of HA showed strong enhancements of HC and HD.  In a second experiment, 

saturation of HC revealed a strong enhancement of HA, a weak enhancement of HE, but no enhancement of 

HD.  This data has led to our support of this structure for 24. 
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(S)-5-(3,3-Bis(4-methoxyphenyl)allyl)-2,2-diphenyltetrahydrofuran   (18b) 

Tetrahydrofuran 18b was purified by flash chromatography (SiO2, 100 : 0 - 

80 : 20 gradient hexanes/EtOAc) to give (60 mg) obtained from the catalytic 

carboetherification of 17 and 13b as a pale yellow oil (88% yield).  [α]D
19.9 = 

4.6° (c = 0.85, CHCl3);  ee = >95%, determined by HPLC analysis [Chiralpak 

AD-RH, 65 : 35 MeCN/H2O, 0.20 mL/min, λ = 254 nm, t(major) = 77.01 min, 

t(minor) = 73.07 min]; 1H NMR (400 MHz, CDCl3) δ 7.44 (td, J = 9.6, 1.2 Hz, 4H), 7.31-7.16 (m, 6H), 

7.13-7.08 (m, 4H), 6.88 (d, J = 9.6 Hz, 2H), 6.79 (d, J = 10 Hz, 2H), 6.07 (t, J = 6.8 Hz, 1H), 4.26-4.18 

(m, 1H), 3.83 (s, 3H), 3.79 (s, 3H), 2.67-2.38 (m, 4H), 2.02-1.93 (m, 1H), 1.72-1.63 (m, 1H); 13C NMR 

(75 MHz, CDCl3) δ 158.7, 158.5, 147.1, 146.7, 142.2, 135.8, 132.6, 131.1, 128.4, 128.1, 127.9, 126.5, 

125.9, 123.84, 113.5, 113.4, 88.1, 78.9, 55.2, 38.8, 36.3, 30.9; IR (neat): 3058, 3022, 2925, 2850, 1606, 

1511, 1448, 1288, 1246, 1174, 1109, 1034, 833 cm-1; HRMS (EI)  calc'd for [M·]+  C33H32O3: 476.2343, 

found 476.2346. 

 

(S)-5-(3,3-Bis(4-fluorophenyl)allyl)-2,2-diphenyltetrahydrofuran   (18c) 

Tetrahydrofuran 18c was purified by flash chromatography (SiO2, 100 : 0 - 90 : 

10 gradient hexanes/Et2O) to give (44 mg) obtained from the catalytic 

carboetherification of 17 and 13c as a pale yellow oil (70% yield).  [α]D
19.5 = -

4.5° (c = 0.98, CHCl3);  ee = >95%, determined by HPLC analysis [Chiralpak 

AD-RH, 65 : 35 MeCN/H2O, 0.20 mL/min, λ = 254 nm, t(major) = 78.12 min, 

t(minor) = 74.75 min]; 1H NMR (300 MHz, CDCl3) δ 7.48-7.42 (m, 4H), 7.34-6.92 (m, 14H), 6.16 (t, J = 

7.2 Hz, 1H), 4.30-4.22 (m, 1H), 2.69-2.38 (m, 4H), 2.05-1.95 (m, 1H), 1.73-1.65 (m, 1H); 13C NMR (75 

MHz, CDCl3) δ  162.1 (d, J1 = 245 Hz), 161.9 (d, J1 = 245 Hz), 147.0, 146.6, 141.2, 131.5 (d, J3 = 8.03 

Hz), 128.8 (d, J3 = 6.9 Hz), 128.1, 128.0, 126.6, 126.1, 125.9, 125.8, 115.2 (d, J2 = 21.75 Hz), 114.9 (d, J2 

= 21.75 Hz), 88.2, 78.6, 38.7, 36.3, 30.9; IR (neat): 3058, 2964, 2877, 1602, 1506, 1448, 1261, 1224, 



1557, 1094, 1054, 912, 838, 797 cm-1; HRMS (CI)  calc'd for [M+H]+  C31H27OF2: 453.2026, found 

453.2024. 

 

(R)-3-(2-(5,5-Diphenyltetrahydrofuran-2-yl)ethyl)benzofuran   (26) 

  Tetrahydrofuran 26 was purified by flash chromatography (SiO2, 100 : 0 - 90 : 

10 gradient hexanes/EtOAc) to give (50 mg) obtained from the catalytic 

carboetherification of 17 and 25 as a clear oil (88% yield).  [α]D
18.3 = 15.7° (c = 

0.71, CHCl3);  ee = 94%, determined by HPLC analysis [Chiralpak AD-RH, 90 : 10 MeCN/H2O, 0.65 

mL/min, λ = 254 nm, t(major) = 17.87 min, t(minor) = 16.75 min]; 1H NMR (400 MHz, CDCl3) δ 7.57 (d, 

J = 7.6 Hz, 1H), 7.48-7.44 (m, 6H), 7.33-7.26 (m, 6H), 7.25-7.17 (m, 2H), 4.24-4.18 (m, 1H), 2.98-2.79 

(m, 2H), 2.71-2.64 (m, 1H), 2.60-2.53 (m, 1H), 2.15-2.03 (m, 2H), 1.97-1.93 (m, 1H), 1.75-1.66 (m, 1H); 

13C NMR (75 MHz, CDCl3) δ 155.4, 147.3, 146.7, 141.1, 128.3, 128.1, 128.0, 126.6, 126.5, 125.9, 125.8, 

124.1, 122.2, 120.2, 119.7, 111.4, 88.0, 78.3, 38.8, 35.8, 31.4, 20.4; IR (neat): 3059, 3012, 2928, 2859, 

1597, 1490, 1454, 1261, 1184, 1092, 1051, 858, 801, 747 cm-1; HRMS (EI)  calc'd for [M·]+  C26H24O2: 

368.1774, found 368.1771. 

 

(R)-3-(2-(5,5-Diphenyltetrahydrofuran-2-yl)ethyl)-2-ethyl-1-tosyl-1H-indole (28) 

Tetrahydrofuran 28 was purified by flash chromatography (SiO2, 100 : 0 - 90 : 

10 gradient hexanes/EtOAc) to give (66 mg) obtained from the catalytic 

carboetherification of 17 and 27 as a white solid (81% yield), required two 

columns to obtain pure compound 28; [α]D
20 = 3.75° (c = 0.95, CHCl3); ee = nd (enantiomers were 

unseparable); mp 47 °C; 1H NMR (400 MHz, CDCl3): δ 8.18 (d, J = 8.4 Hz, 1H), 7.52 (d, J = 8.8 Hz, 2H), 

7.49-7.41 (m, 4H), 7.32-7.19 (m, 8H), 7.06 (d, J = 8.4 Hz, 2H), 4.06-4.00 (m, 1H), 3.10-3.01 (m, 2H), 

2.91-2.75 (m, 2H), 2.66-2.59 (m, 1H), 2.55-2.49 (m, 1H), 2.28 (s, 3H), 2.00-1.84 (m, 2H), 1.77-1.70 (m, 

1H), 1.64-1.55 (m, 1H), 1.31 (t, J = 7.2 Hz, 3H); 13C NMR (75 Hz, CDCl3): δ 147.3, 146.7, 144.2, 139.3, 

136.9, 135.9, 130.9, 129.5, 128.1, 128.0, 126.6, 126.5, 126.1, 125.8, 125.7, 123.9, 123.3, 120.7, 118.6, 



115.4, 88.0, 77.9, 38.7, 36.6, 31.3, 21.5, 20.9, 19.9, 15.7; IR (neat): 3058, 2934, 2873, 1597, 1448, 1361, 

1225, 1172, 1090, 1048, 811, 748, 703 cm-1; HRMS (EI) calcd for [M]+ C35H35O3NS: 549.2332, found: 

549.2335. 

 

(S,E)-5-(3-(4-methoxyphenyl)allyl)-2,2-diphenyltetrahydrofuran (30) 

Tetrahydrofuran 30 was purified by preparative TLC (SiO2, 95 : 5 

hexanes/ether, developed 2x) to give (25 mg) obtained from the catalytic 

carboetherification of 17 and 29a as a colorless oil (46% yield). [α]D
19 = 

8.30° (c = 0.6, CHCl3); ee = >95%, determined by HPLC [Chiralpak AD-

RH, 65 : 35 CH3CN/H2O, 0.5 mL/min, λ = 254 nm, t(major) =  31.22 min, t(minor) =  39.63 min]; 1H 

NMR (400 MHz, CDCl3): δ 7.46 (d, J = 8.0 Hz, 4H), 7.32-7.25 (m, 6H), 7.22-7.17 (m, 2H), 6.85 (m, 2H), 

6.41 (d, J = 16.0 Hz, 1H), 6.13 (dt, J = 16.0 Hz, 7.2 Hz, 1H), 4.31-4.23 (m, 1H), 3.81 (s, 3H), 2.67-2.61 

(m, 2H), 2.57-2.45 (m, 2H), 2.09-1.98 (m, 1H), 1.81-1.70 (m, 1H); 13C NMR (75 Hz, CDCl3): δ 158.8, 

147.1, 146.6, 131.4, 130.5, 128.1, 128.0, 127.5, 127.1, 126.6, 126.5, 125.9, 124.6, 113.9, 88.2, 78.7, 55.3, 

39.7, 38.8, 30.7; IR (neat): 3028, 2952, 2835, 1607, 1510, 1456, 1248, 1174, 1035, 701 cm-1; HRMS (EI) 

calcd for [M]+ C26H26O2: 370.1947, found: 370.1933. 

 

(S,E)-5-(3-(4-(tert-butyl)phenyl)allyl)-2,2-dimethyltetrahydrofuran (31) 

Tetrahydrofuran 31 was purified by preparative TLC (SiO2, 95 : 5 

hexanes/ether, developed 2x) to give (35 mg) obtained from the catalytic 

carboetherification of 20 and 29b as a colorless oil (42% yield). [α]D
19 = -

21.73° (c = 0.55, CHCl3); ee = 95%, determined by HPLC [Chiralpak AD-RH, 

90 : 10 CH3CN/H2O, 0.5 mL/min, λ = 254 nm, t(major) =  35.61 min, t(minor) =  12.19 min]; 1H NMR 

(400 MHz, CDCl3): δ 7.33-7.28 (m, 4H), 6.42 (d, J = 16.0 Hz, 1H), 6.18 (dt, J = 16.0 Hz, 7.6 Hz, 1H), 

4.11-4.03 (m, 1H), 2.55-2.48 (m, 1H), 2.40-2.33 (m, 1H), 2.05-1.97 (m, 1H), 1.75-1.66 (m, 3H), 1.31 (s, 

9H), 1.27 (s, 3H), 1.24 (s, 3H); 13C NMR (75 Hz, CDCl3): δ 150.0, 134.9, 131.7, 125.9, 125.7, 125.4, 80.7, 

OPh
Ph

OMe

(30)



78.1, 39.8, 38.4, 34.5, 31.3, 31.1, 29.2, 28.1; IR (neat): 2964, 2868, 1507, 1457, 1363, 1269, 1143, 1050, 

967 cm-1; HRMS (EI) calcd for [M]+ C19H28O: 272.2146, found: 272.2140. 

 

Conversion of 14 to the known compound (S)-2-(Tetrahydrofuran-2-yl)ethyl benzoate to establish 

absolute configuration.8  

  

(S)-2-(Tetrahydrofuran-2-yl)ethyl benzoate: 

Tetrahydrofuran 14 (35 mg, 0.132 mmol, 1 equiv) was dissolved in CH2Cl2 (2.0 mL) and the mixture 

placed, with stirring,  in a -78 °C bath.  After allowing the mixture to stir for 10 minutes a stream of O3 

gas was bubbled through until a deep blue color persisted even with removal of the gas stream.  Once 

enough O3 had been bubbled into the mixture the reaction was purged with a stream of argon gas.  The 

mixture was then treated with sodium borohydride (23.0 mg, 0.608 mmol, 4.5 equiv) and allowed to stir 

and come to room temperature overnight.  The reaction was then quenched with 1 M HCl (5 mL) and 

extracted with diethyl ether (3 x 10 mL).  The combined organics were then dried over anhydrous sodium 

sulfate and the solvent removed in vacuo to give 131 mg of the crude alcohol product which was used in 

the next step without further purification.                                                                       

Pyridine (0.097 mL, 1.20 mmol, 9 equiv) was added via syringe at room temperature to a solution of the 

crude alcohol from the previous step (131 mg) dissolved in CH2Cl2 (2.0 mL).  The resulting mixture was 

allowed to stir for 20 minutes before benzoyl chloride (0.069 mL, 0.594 mmol, 4.5 equiv) was added drop 

wise via syringe.  The mixture was then allowed to stir at room temperature for 3 hour before being 

quenched with water (5 mL) and then extracted with CH2Cl2 (3 x 5 mL).  The combined organic layers 

were then washed with brine (15 mL) and dried over anhydrous sodium sulfate.  Removal of the solvent 

in vacuo gave the crude residue which was purified by flash chromatography 30% Et2O in hexanes to 

give (S)-2-(tetrahydrofuran-2-yl)ethyl benzoate8, 23.0 mg, as a colorless oil (79% yield over 2 steps).  



[α]D
19.5 = 13.1° (c = 0.53, CH2Cl2).  1H NMR data matched that previously reported by Matsubara.8  1H 

NMR (400 MHz, CDCl3) δ 8.04 (d, J = 8.0 Hz, 2H), 7.56 (t, J = 7.6 Hz, 1H), 7.44 (t, J = 8.0 Hz, 2H), 

4.50-4.37 (m, 2H), 4.05-3.97 (m, 1H),  3.92-3.86 (m, 1H), 3.78-3.72 (m, 1H), 2.12-1.85 (m, 5H), 1.60-

1.51 (m, 1H).  

The absolute configuration of the 2-(tetrahydrofuran-2-yl)ethyl benzoate we obtained was assigned as (S) 

by comparing the optical rotation with the literature value of the known enantiomer.8 [lit. (R)-2-

(tetrahydrofuran-2-yl)ethyl benzoate: [α]D
26 = -14.7° (c = 2.21, CH2Cl2)].   

 

References 

1. Miao, L.; Haque, I.; Manzoni, M. R.; Tham, W. S.; Chemler, S. R., Org. Lett. 2010, 12 (21), 4739-

4741. 

2. (a) Liwosz, T. W.; Chemler, S. R., Chem. Eur. J. 2013, 19 (38), 12771-12777. 

 (b) Terada, Y.; Arisawa, M.; Nishida, A., Angew. Chem. Int. Ed. 2004, 43 (31), 4063-4067. 

 
3. Miller, Y.; Miao, L.; Hosseini, A. S.; Chemler, S. R., J. Am. Chem. Soc. 2012, 134 (29), 12149-

12156. 

4. LemieÌ€re, G.; Gandon, V.; Cariou, K.; Hours, A.; Fukuyama, T.; Dhimane, A.-L.; Fensterbank, L.; 

Malacria, M., J. Am. Chem. Soc. 2009, 131 (8), 2993-3006. 

5. Dragoli, D. R.; Burdett, M. T.; Ellman, J. A., J. Am. Chem. Soc. 2001, 123 (41), 10127-10131. 

6. Youssef, A. M.; Safo, M. K.; Danso-Danquah, R.; Joshi, G. S.; Kister, J.; Marden, M. C.; Abraham, 

D. J., J. Med. Chem 2002, 45 (6), 1184-1195. 

7. Aburel, P. S.; Romming, C.; Ma, K.; Undheim, K., J. Chem. Soc., Perkin Trans. 1 2001,  (12), 1458-

1472. 

8. Asano, K.; Matsubara, S., J. Am. Chem. Soc. 2011, 133 (42), 16711-16713. 

 
 

 



HPLC traces:       

 

# Time [min] Area [%] 
1 132.55 55.6 
2 142.67 44.4 

                                 

O
Ph

Ph

2a  

                                                                                                                                                             

         

# Time [min] Area [%] 
1 138.65 99.7 
2 153.09 0.3 
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2a using (S,S)-iPr-box: 

 
# Time [min] Area [%] 
1 137.23 96.7 
2 152.69 3.3 

 
 
 
 
 
 
 
 
 
 
 
2a using (S)-iPr-QUINOX: 

 
# Time [min] Area [%] 
1 151.47 42.0 
2 158.19 58.0 
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2a using (R,R)-Ph-box: 

 
# Time [min] Area [%] 
1 147.54 15.4 
2 156.13 84.6 
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# Time [min] Area [%] 
1 174.57 48.5 
2 186.55 51.5 
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# Time [min] Area [%] 
1 178.78 99.4 
2 197.52 0.6 
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# Time [min] Area [%] 
1 4.00 49.6 
2 4.65 50.4 

                                                                                                                                                                                        

O
4                                                                                                                                        

 

# Time [min] Area [%] 
1 3.97 15.0 
2 4.57 85.0 
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(4) using (S,S)-iPr-box: 

 
# Time [min] Area [%] 
1 3.83 31.3 
2 4.43 68.7 

 
 
 
 
 
 
 
 
(4) using (S)-iPr-QUINOX: 

 
# Time [min] Area [%] 
1 3.94 65.8 
2 4.63 34.2 
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SUPPORTING INFORMATION 

Enantioselective Copper-Catalyzed Intra- and Intermolecular Carboetherification of Unactivated 

Alkenes 

    

COMPUTATIONAL DETAILS 
 

Unrestricted Density Functional Theory (DFT) calculations (geometry optimizations, vibrational 

frequencies) were carried out at the hybrid Generalized Gradient Approximation (GGA) level 

using the Gaussian 09 software.1 The UB3LYP2 functional was coupled with a 6-31+G(d) basis 

set3 applied on all atoms (i.e., H, C, N, O, Cu). Trifluorotoluene (ε = 9.18) was employed in the 

experiment; however parameters for this solvent are not available in Gaussian. Because of this 

the solvation free energy (ΔGsolv) was computed using the default Polarizable Continuum Model 

(PCM) in Gaussian and parameters for dichloromethane (ε = 8.93).4 We have previously used 

parameters for 1,2-dichloroethane (ε = 10.13) to model trifluorotoluene5, but since its dielectric 

constant is closer to dichloromethane, we employ the latter solvent here instead. Tests revealed 

that the relative energies of species which may be important in the reaction mechanism did not 

change much when geometry optimizations and frequency calculations were carried out in 

solution. For this reason, we chose to calculate the solvation free energy by carrying out single 

point calculations on geometries which were stationary points in the gas phase. The 

thermochemical data was obtained for 373.15 K, in accordance with the experimental conditions. 

Analysis of vibrational frequencies showed that the optimized structures had all real normal 

modes, whereas the transition states possessed only one imaginary frequency. The Intrinsic 

Reaction Coordinate (IRC) method6 was employed to find the initial coordinates of the product 

species, which result from considering the path of steepest descent for each transition state 

(TS). The geometries found in this way were then confirmed to be minima of the potential 

energy surface. The spin density and Natural Bond Order (NBO) analysis using NBO 3.17 

version for Gaussian were performed at the UB3LYP/6-31+G(d) level of theory for the pro-S 

(aka major) and pro-R (aka minor) transition states. Plots visualizing the spin density were 

prepared with the Avogadro (1.1.0)8 open source molecular editor and visualizer, using 

Cartesian coordinates of the gas phase species. The so-called tetrahedral twist angle (θTTA) is 

used to define the angle between two planes: the first containing two nitrogen atoms of 

bis(oxazoline) ligand and the Cu atom; the second contains the carbon atom boded to Cu 

(which belongs to the 6-member heterocyclic ring in a chair conformation), the O atom bonded 

to Cu (also in the ring), and Cu (see Fig 1). θTTA  was measured  using the Mercury 2.4 program.9  
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Spin density  
The most important contributions computed for the major and minor transition states in vacuum 

and solvent are presented in Table 1, and illustrated in Fig 2 a – d with the iso value set to 

0.0005 au.  
Table 1. Spin densities of major and minor transition states.  

Major TS (vacuum) Minor TS (vacuum) 
Atom Description Percentage Atom Description Percentage

Cu ─ 45.1 % Cu ─ 46.0 %
C1 connecting Cu with CYPN 

through propane 
27.2 % C1 connecting Cu with CYPN 

through propane
27.7 %

O1 connecting Cu with CYPN 
through methyl 

22.1% O1 connecting Cu with CYPN 
through methyl

24.1 %

N1 + N2 connecting Cu with 5-
membered heterocyclic rings 

3.48 + 2.54 
= 6.02 %

N1 + N2 connecting Cu with 5-
membered heterocyclic rings 

2.58 + 1.44 
= 4.02 %

Major TS (dichloromethane) Minor TS (dichloromethane)
Cu ─ 46.1 % Cu ─ 47.3 %
C1 connecting Cu with CYPN 

through propane 
26.3 % C1 connecting Cu with CYPN 

through propane
26.9 %

O1 connecting Cu with CYPN 
through methyl 

21.1 % O1 connecting Cu with CYPN 
through methyl

22.5 %

N1 + N2 connecting Cu with 5-
membered heterocyclic rings 

3.72 + 2.63 
= 6.35 % 

N1 + N2 connecting Cu with 5-
membered heterocyclic rings 

2.80 + 1.60 
= 4.40 % 

CYPN – cyclopentyl 

  



 

 
 

 

(a) 
 

(b) 
 

 

(c) 
 

(d) 
Fig. 3 Spin Densities for the major transition state in vacuum (a) and in dichloromethene (b), and for 
minor transition state in vacuum (c) and in dichloromethane (d).  

 
It was found that 93% of the SOMO resides on Cu (46%), O1 (21%) and C1 (26%) for the major 

TS. In the case of the minor TS 97% of the SOMO also resides on these atoms however its 

composition is slightly different, i.e., Cu (47%), O1 (23%) and C1 (27%). Hence it is fair to state 

that these two transition states highly resemble one another. The most striking difference found 

between the major and minor TS is the relationship between N-Cu and O-Cu bond distances 

and their corresponding NLP → CuLP* and OLP → CuLP* NBO donor-acceptor stabilization 

energies (Table 2). 
 
  



Table 2. Selected β-spin NBO donor-acceptor stabilization energies and bond distances for major and 
minor transition states. Each NBO is labeled as: BD – bond, LP – valence lone pair, and the asterisk 
indicates a non-Lewis orbital.  

 Donor → acceptor ENBO (kcal/mol) Corresponding bond distance (Å) 

Major TS 

C2-O1(BD) → Cu(LP*) 16.21 2.049 
O1(LP) → Cu(LP*) 28.46 1.951 
N1(LP)  → Cu(LP*) 30.65 2.015 
N2(LP)  → Cu(LP*) 20.32 2.099 

Minor TS 

C2-O1(BD) → Cu(LP*) 13.34 2.044 
O1(LP)  → Cu(LP*) 13.67 1.942 
N1(LP)  → Cu(LP*) 26.28 2.029 
N2(LP)  → Cu(LP*) 14.27 2.116 

 
The NBO donor - acceptor stabilization energy (ENBO) reveals that C2-O1 contributes about 16 

kcal/mol, whereas the same bond in the minor TS contributes almost 3 kcal/mol less towards 

ENBO. Moreover, N(1,2) → Cu is very comparable for both transition states. However, the 

O1→Cu gives about 50% more NBO stabilization energy in the major TS as compared to the 

minor TS.  

An analysis of the Wiberg bond indices13 (WIB) showed that within the major TS about 68% of 

the C1-Cu and 45% of C2-O1 bond is formed (see Table3). In order to obtain a percentage of 

the formed bond first the relative variation of the WIB has to be calculated as:14 

 

ܤ߂                                        ஺ܱି஻ ൌ ሺ ஺ܹି஻
்ௌ െ ஺ܹି஻

ோ ሻ ሺ ஺ܹି஻
ூ௡௧௉ െ ஺ܹି஻

ோ ሻ⁄                                  [1] 

 

where W is the total WIB for a given bond, A-B, in the NAO basis (i.e., ∑ ஺ܹି஻ሺߙሻ ൅ ஺ܹି஻ሺߚሻ). 

The superscripts R, TS, and IntP refer to reactant, transition state, and intermediate product, 

respectively. 

Since the C1-Cu and C2-O1 bonds are not present in the starting material their WIB indexes are 

0. Therefore Eq. (1) may be simplified to: 

 

ܤ߂                                                   ஺ܱି஻ ൌ ሺ ஺ܹି஻
்ௌ ሻ ሺ ஺ܹି஻

ூ௡௧௉ሻ⁄                                            [2] 
    
Hence the percentage evolution (%EV)15 for a given A-B bond order is obtained as shown 

below: 

 
ܸܧ%                                                        ൌ ܤ߂100 ஺ܱି஻                                                  [3] 
            



No

cas

 

      

 

The

val
  
Tak

hig

for

 
Mu
 
In 

car

Mu

res

 
Fig
dic

ote that for 

se the perc

                  

e results c

ues. Hence

ken all toge

ghly stabiliz

mation of th

ulliken charg

order to 

rboetherific

ulliken char

sults obtaine

g. 4 Mullike
hloreometha

the O1-Cu 

centage indi

Table 3. ΔB
transition sta

 
WIBC1-C

WIBC2-O

WIBO1-C

ΔBOC1-C

ΔBOC2-O

ΔBOO1-C

computed w

e the ΔBOA-

ether (i.e., N

zing NBO 

he C2-O1 b

ges 

illustrate 

cation react

rges were c

ed in vacuu

 

(a)

n charges 
ane. Red ind

bond Eq. 

icates how 

BOA-B and to
ate obtained

Cu 

O1 

Cu 

Cu 

O1 

Cu 

with inclusi

B and corre

NBO, WBI, 

donor-acc

bond and b

the chan

tion progre

computed i

um are very

) 

for the star
dicates nega

(1) has to b

much of th

otal WIB for t
d in vacuum.
Major TS

0.1965 

0.1775 

0.1844 

0.6783 

0.4455 

0.9077 

on of solv

esponding p

ENBO, etc.)

ceptor ener

reaking of t

nge in th

esses from 

n dichlorom

y similar. 

rting materia
ative charge,

be used, a

his bond is b

the intermed
. 

I

ent do not

percentages

) it seems t

rgy for O1

the Cu-O1 

e charge 

the startin

methane, se

al (a) and t
, while blue p

nd the WIB

broken. 

diate product

Intermedia
0.28

0.39

0.10

—

—

—

t have a s

s are very s

hat the maj

1→Cu, wh

bond. 

distributio

ng material

ee Figure 4

the major tr
positive cha

B is assume

t and the ma

ate Produc
897 

984 

015 

— 

— 

— 

ignificant e

similar. 

jor TS is pr

ich may b

on that o

l (SM) to t

4. It is impo

(b) 

ransition sta
rge. 

ed to be 1.

ajor  

t 

effect on th

referred, du

be related 

ccurs whe

the major 

ortant to no

ate (b) obta

 In this 

he WIB 

ue to  a 

to the 

en the 

TS the 

ote that 

ained in 



 
Additionally Table 4 contains values of Mulliken charges for the most important atoms obtained 

for SM and major TS as well as for the minor TS in both environments.   

 
Table 4. Mulliken charges for select atoms of the major and minor transition states obtained in vacuum 
and dichloreomethane. 

Vacuum Dichloromethane 
Atom SM Major TS Minor SM Major TS Minor 

C1 -0.641 -0.604 -0.782 -0.654 -0.657 -0.829 
C2 +0.197 +0.927 +1.193 +0.162 +0.949 +1.222 
O1 -0.127 -0.795 -0.032 -0.156 -0.098 -0.079 
C5 + 1.310 -0.551 -0.156 1.302 -0.545 -0.140 

 

Tetrahedral twist angle   

For the major TS the value of the tetrahedral twist angle is 43.52 degrees, so about 16.5 

degrees less than a perfect tetrahedron whereas the minor TS has θTTA=60.90 degrees, which 

is only slightly more than the twist angle for Td.  

 
 
 
 
 

(a) 



 
 
 
 

(b) 
 
 
 
 
 
 
 
 

Fig. 5 Graphic representation of the tetrahedral twist angles: θTTA = 60.9° and 43.5°, for the minor (a) and 
major (b) transition states, respectively.  
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(d) 
Fig. 8 Electrophilic MO FDS of the: a) major TS in vacuum, b) major TS in dichloromethane, and the c) 
minor transition state in vacuum, and d) minor TS in dichloromethane. Iso values MO and ED are set to 
0.05 and 0.003 au. The blue color indicates the most susceptible regions to be attacked by an 
electrophile.  
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(d) 
Fig. 9 Nucleophilic MO FDS of the: a)  major TS in vacuum, b) major TS in dichloromethane, and the c) 
minor transition state in vacuum,  and d) minor TS in dichloromethane. Iso values MO and ED are set to 
0.05 and 0.003 au. The blue color indicates the most susceptible regions to be attacked by a nucleophile.  
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(d) 
Fig. 10 Radical FDS of the: a) major TS in vacuum, b) major TS in dichloromethane, and the c) minor 
transition state in vacuum, and d) minor TS in dichlormorthane. Iso values MO and ED are set to 0.05 
and 0.003 au. The blue color indicates the most susceptible regions to be attacked by a radical.  
 
 
  



CARTESIAN COORDINATES 
 
[C26H45CuN2O3]+ (Major TS) 
C    0.00000000  0.00000000  0.00000000  
C    1.27421500  0.45748700  0.38872600  
C    2.31183200 -0.45012700  0.98344100  
C    2.93609300  0.16960400  2.25621500  
C    1.69784400  0.64694800  3.03623500  
O    0.88071500  1.40712900  2.16166100  
Cu  -0.94393400  0.93043500  1.66215100  
N   -2.75236900  0.04396800  1.73092100  
C   -3.87874700  0.64631600  1.93500800  
O   -4.98260000 -0.01963900  1.57321300  
C   -4.54761700 -1.22658600  0.88155500  
C   -3.05867000 -1.34627200  1.26394700  
H   -2.45310000 -1.55050100  0.37700600  
C   -2.73895200 -2.44671700  2.32972400  
C   -1.24555300 -2.40766600  2.70586900  
H   -0.60396800 -2.56247900  1.83064800  
H   -1.02030100 -3.20645100  3.42140100  
H   -0.96653500 -1.45859500  3.17708400  
C   -3.03993500 -3.81995800  1.68964000  
H   -2.45814000 -3.97146500  0.77164500  
H   -4.09997500 -3.94893800  1.44311800  
H   -2.77340600 -4.62334500  2.38506800  
C   -3.57990100 -2.27156900  3.60934000  
H   -3.36684000 -1.31861600  4.10680100  
H   -3.34198300 -3.06940400  4.32141500  
H   -4.65759100 -2.32424900  3.41725600  
H   -4.70853900 -1.06120600 -0.18772200  
H   -5.18252700 -2.04156900  1.22497200  
C   -4.18278300  1.97567900  2.60247500  
C   -2.96038600  2.84326500  2.82087400  
N   -1.79506900  2.74388700  2.28730100  
C   -1.01395300  3.95763000  2.66496200  
C   -1.88322200  4.55898800  3.79211700  
O   -3.17309300  3.89023800  3.63298700  
H   -2.06519500  5.63016600  3.71664300  
H   -1.52076900  4.31900800  4.79586800  
C   -0.74463000  4.91167800  1.45601500  
C   -2.04932000  5.48040000  0.86459900  
H   -2.70615000  4.68392000  0.49640400  
H   -1.81941500  6.13098200  0.01337300  
H   -2.61349700  6.08385000  1.58522800  
C    0.01652600  4.15103300  0.35299700  
H   -0.60065600  3.35815900 -0.08491500  
H    0.93256600  3.69677200  0.74487100  
H    0.29196400  4.83881500 -0.45466000  
C    0.14755200  6.06641600  1.96056100  
H   -0.34254500  6.66979900  2.73376500  
H    0.39250100  6.74227200  1.13357800  



H    1.09221100  5.69088600  2.37320000  
H   -0.04604600  3.62162500  3.04615000  
C   -5.17533800  2.78488900  1.71501900  
H   -4.75783000  2.97522700  0.72122700  
H   -5.39276000  3.74312000  2.19275300  
H   -6.10847600  2.22929800  1.60155100  
C   -4.85440000  1.66189800  3.97251000  
H   -4.16924100  1.13264800  4.64247400  
H   -5.74196000  1.04460600  3.81678700  
H   -5.15402000  2.59561400  4.45247500  
H    1.15962900 -0.21631200  3.45984200  
H    1.98849500  1.29563400  3.87711700  
C    3.89678000  1.35905400  1.94227100  
C    5.04836500  1.22953500  2.95495400  
C    5.24083400 -0.29066600  3.06791100  
C    3.79841400 -0.83762100  3.08109800  
H    3.73097300 -1.85867200  2.68838400  
H    3.42562600 -0.87624600  4.11451600  
H    5.81434000 -0.59320600  3.95038600  
H    5.78086700 -0.66203300  2.18658200  
H    4.75173300  1.64476600  3.92856300  
H    5.95225000  1.76110100  2.63870000  
H    3.38433400  2.32635100  1.98754300  
H    4.29882700  1.25772500  0.92450100  
H    3.08738600 -0.62789600  0.22529600  
H    1.85878700 -1.42133400  1.21894300  
H    1.63134300  1.39535200 -0.02713700  
H   -0.20384200 -1.06554000  0.07543900  
H   -0.52503300  0.52651700 -0.79788500 
 
[C26H45CuN2O3]+

 (Minor TS)  
C    0.00000000  0.00000000  0.00000000  
C   -1.35624900 -0.62968200  0.11620200  
C   -2.47425100 -0.25095900 -0.64881400  
H   -3.20860100 -1.00945200 -0.90558400  
H   -2.36380000  0.56231600 -1.36630000  
Cu  -3.37034100  0.76448300  1.00551500  
O   -1.72176100  0.27842000  1.91032300  
C   -0.50630300  0.94995800  2.15760400  
C    0.62241600  0.22213600  1.39721900  
C    1.94218800  1.05478200  1.37097500  
C    3.06139200  0.11112500  1.85521200  
C    2.33425800 -0.83213300  2.82556200  
C    1.00650500 -1.11802000  2.10117300  
H    1.16875900 -1.90282500  1.34894100  
H    0.21568900 -1.47561700  2.77005200  
H    2.14700200 -0.31860700  3.77912200  
H    2.89689600 -1.74361500  3.05373000  
H    3.89792500  0.64932400  2.31317900  
H    3.46718100 -0.46418800  1.01215200  
H    1.85186000  1.90275500  2.06484900  
H    2.14396700  1.48130900  0.38148900  



H   -0.54781900  2.00462700  1.84591600  
H   -0.32048800  0.93163700  3.24289900  
N   -5.31925500  0.20951000  0.97055600  
C   -6.32536100  0.97777600  1.22574000  
O   -7.53549400  0.50914100  0.89361200  
C   -7.32982500 -0.73934000  0.17333600  
C   -5.85809400 -1.09745100  0.47258800  
H   -5.33516800 -1.35123200 -0.45377300  
C   -5.66176700 -2.28455400  1.47270100  
C   -4.16176700 -2.52545700  1.72955900  
H   -3.62862900 -2.74786600  0.79708000  
H   -4.03344000 -3.39023700  2.39042500  
H   -3.67675600 -1.67132000  2.21259700  
C   -6.24469200 -3.55432800  0.81291500  
H   -5.77187700 -3.75711800 -0.15648900  
H   -7.32743900 -3.49384500  0.65495300  
H   -6.06381700 -4.42354400  1.45465400  
C   -6.36620100 -2.02459800  2.81841300  
H   -5.94967900 -1.14942200  3.32948300  
H   -6.22690500 -2.88497000  3.48219900  
H   -7.44691500 -1.87676900  2.70804400  
H   -7.52113600 -0.53736900 -0.88446400  
H   -8.06397700 -1.45097900  0.54754100  
C   -6.39003200  2.31592200  1.93862300  
C   -5.05562200  3.02208900  2.07267600  
N   -3.91043200  2.73362200  1.56013700  
C   -2.99145500  3.87699100  1.84596100  
C   -3.77311300  4.66103700  2.92274400  
O   -5.13099500  4.14742000  2.80243500  
H   -3.82029000  5.73836800  2.76974000  
H   -3.43567000  4.45001800  3.94165900  
C   -2.62000500  4.69829500  0.56833000  
C   -3.85837300  5.34981800 -0.07825000  
H   -4.58435500  4.59697500 -0.40581800  
H   -3.55845300  5.92026400 -0.96426000  
H   -4.36825900  6.04801900  0.59527700  
C   -1.94566400  3.77659800 -0.46525300  
H   -2.63062300  2.99923400 -0.81972300  
H   -1.05435300  3.29154200 -0.04945800  
H   -1.62536800  4.35855300 -1.33685700  
C   -1.61128000  5.79047400  0.98468900  
H   -2.03751500  6.50924400  1.69441100  
H   -1.29037200  6.36032600  0.10562400  
H   -0.71362300  5.35614900  1.44284200  
H   -2.06596000  3.47381900  2.26542000  
C   -7.34658100  3.26998900  1.16312900  
H   -6.98795700  3.45222000  0.14482800  
H   -7.41390200  4.22589400  1.68654500  
H   -8.34295800  2.82808200  1.10617100  
C   -6.96932400  2.04729200  3.36173200  
H   -6.30213700  1.40880500  3.94958500  
H   -7.94241400  1.55757100  3.27849700  



H   -7.09758100  2.99562900  3.88778300  
H   -1.38128300 -1.61064000  0.58369700  
H   -0.07214600  0.94637000 -0.55068100  
H    0.63409200 -0.67285200 -0.59517900 
 
C27H45CuF3N2O6S (tBu-SM, 4-coord) 
C    0.00000000  0.00000000  0.00000000  
C    0.46916600 -1.47689400  0.11621500  
C    1.88510400 -1.49416900  0.75972600  
H    1.78512100 -1.14602300  1.80447700  
H    2.22804800 -2.54101400  0.80414600  
O    2.78704600 -0.68222700  0.06118300  
Cu   4.60775900 -0.91992700  0.09264000  
N    5.12249900  1.06921200  0.04967100  
C    6.17520100  1.53386700 -0.51945400  
O    6.14921800  2.83763000 -0.86201100  
C    4.78262800  3.29285000 -0.62024700  
C    4.17934200  2.19707700  0.28462600  
H    3.19473400  1.87880100 -0.06675900  
C    4.04989300  2.59150000  1.79313100  
C    3.57206700  1.38205200  2.61881700  
H    2.64529700  0.96568400  2.21300000  
H    3.38407500  1.69416100  3.65353600  
H    4.32255300  0.58735300  2.64552700  
C    2.98395300  3.70487400  1.88913600  
H    2.01843300  3.36717100  1.49228200  
H    3.27199700  4.61639500  1.35016100  
H    2.83151900  3.98546300  2.93783600  
C    5.38392900  3.09611200  2.37844500  
H    6.15338300  2.31769200  2.34993400  
H    5.24259200  3.37114400  3.43020000  
H    5.76634200  3.98476400  1.86090400  
H    4.29173700  3.36322200 -1.59620700  
H    4.84757800  4.28287900 -0.17065900  
C    7.50188500  0.83903000 -0.77127500  
C    7.35847600 -0.65877900 -0.96432100  
N    6.31228800 -1.40036300 -0.86877000  
C    6.69020300 -2.79784600 -1.23364400  
C    8.23137800 -2.71152800 -1.25961600  
O    8.50651200 -1.27527000 -1.28048100  
H    8.70621400 -3.13785600 -2.14318100  
H    8.68378900 -3.11380600 -0.35051800  
C    6.00667500 -3.28979800 -2.54617300  
C    6.39207900 -2.42374700 -3.76058100  
H    6.07922000 -1.38189000 -3.62612400  
H    5.89623000 -2.80087400 -4.66286500  
H    7.47156500 -2.43403100 -3.95571400  
C    4.47629400 -3.26400300 -2.36482200  
H    4.09366800 -2.24493800 -2.24295300  
H    4.16734700 -3.84800700 -1.48967100  
H    3.98382400 -3.69469600 -3.24508300  



C    6.44500300 -4.75079900 -2.78594100  
H    7.52438600 -4.84248400 -2.95750800  
H    5.94037500 -5.15409700 -3.67176100  
H    6.18384500 -5.38953200 -1.93324200  
H    6.37167900 -3.45027900 -0.41819000  
C    8.19007300  1.43226800 -2.02856500  
H    7.57141300  1.30338400 -2.92321000  
H    9.14793300  0.93465600 -2.19262200  
H    8.36545000  2.50014300 -1.88447800  
C    8.39560300  1.08098200  0.48577200  
H    7.96382200  0.60634400  1.37128900  
H    8.49509700  2.15667100  0.66020100  
H    9.38989200  0.66233500  0.30815800  
O    4.83386800 -2.40223500  1.51573500  
S    6.07797300 -2.37427000  2.38615100  
C    5.40195500 -3.03988800  4.00778700  
F    6.38747100 -3.11618000  4.91626800  
F    4.88072600 -4.26540100  3.83914200  
F    4.44284700 -2.23074400  4.48800700  
O    6.53564300 -1.00525800  2.69207900  
O    7.10301900 -3.34724300  1.97033700  
C    0.48268000 -2.20316600 -1.26347700  
C   -0.05681300 -3.62043100 -0.99666100  
C   -1.12919300 -3.38638700  0.08056800  
C   -0.47475100 -2.34824300  1.01372500  
H   -1.20996200 -1.74486100  1.55903600  
H    0.12236500 -2.86806500  1.77593100  
H   -1.42663100 -4.30151800  0.60679000  
H   -2.03204900 -2.96791900 -0.38537600  
H    0.73731500 -4.26616800 -0.59557300  
H   -0.44726200 -4.10671300 -1.89908500  
H    1.48345600 -2.19494200 -1.70842400  
H   -0.18696100 -1.68785300 -1.96353200  
H    0.70414300  0.53679900 -0.64597900  
H    0.08212500  0.45312700  1.00159700  
C   -1.40300300  0.20703600 -0.50358200  
C   -1.73433500  0.89406400 -1.60292300  
H   -2.77022500  1.02191900 -1.90878000  
H   -0.97840900  1.35644400 -2.23636500  
H   -2.20564400 -0.23211900  0.09172200 
 
[C26H45CuN2O3]+ (tBu-Pdt-1) Major 
C    0.00000000  0.00000000  0.00000000  
C    1.31579900  0.53961900  0.50373300  
C    2.39277300 -0.45132600  0.94661500  
C    3.06164500  0.22049000  2.16688600  
C    1.81914500  0.80290100  2.85572500  
H    1.28820700  0.03634800  3.43609500  
H    2.03399400  1.65781400  3.50545400  
O    0.96566600  1.27494500  1.77936700  
C    4.07496100  1.33976300  1.76681500  
C    5.19429300  1.26697600  2.81900000  



C    5.33002700 -0.24299500  3.06854200  
C    3.86894700 -0.73716800  3.10172800  
H    3.76994500 -1.78514900  2.79780500  
H    3.48070700 -0.66947300  4.12754200  
H    5.87706700 -0.48599300  3.98545800  
H    5.87043800 -0.70840300  2.23356300  
H    4.88596200  1.77455000  3.74421500  
H    6.12358100  1.73961700  2.48376100  
H    3.60398300  2.32775100  1.70085100  
H    4.49434500  1.11879500  0.77612500  
H    3.09853600 -0.66764300  0.13824300  
H    1.92702600 -1.39876900  1.24733800  
H    1.72874800  1.31219300 -0.15244100  
Cu  -1.10315400  0.93014400  1.40814300  
N   -2.80168000 -0.16143000  1.64371800  
C   -3.96516200  0.36128000  1.84218600  
O   -5.02392900 -0.39192700  1.51244600  
C   -4.50421800 -1.58330900  0.84921600  
C   -3.00662500 -1.58101700  1.22044500  
H   -2.39065300 -1.76697600  0.33671700  
C   -2.59964900 -2.61535600  2.32218000  
C   -1.11089700 -2.44671900  2.68216500  
H   -0.46666000 -2.59044700  1.80747500  
H   -0.82150100 -3.19285500  3.43087500  
H   -0.90396400 -1.45667400  3.10350400  
C   -2.80125600 -4.03015900  1.73682500  
H   -2.21502900 -4.17249600  0.82030700  
H   -3.85054600 -4.24514900  1.50392500  
H   -2.47247800 -4.78523300  2.45936500  
C   -3.44325600 -2.45510300  3.60209400  
H   -3.30235800 -1.46853800  4.05814400  
H   -3.13837900 -3.20192300  4.34348300  
H   -4.51491200 -2.59987100  3.42355600  
H   -4.68488600 -1.46018500 -0.22259300  
H   -5.07363900 -2.43337600  1.22150300  
C   -4.35057500  1.69279300  2.45986900  
C   -3.17252100  2.60574500  2.74292600  
N   -1.97791200  2.57139500  2.26249800  
C   -1.27878300  3.82458200  2.68037300  
C   -2.22076500  4.35704500  3.78278200  
O   -3.46656200  3.63080700  3.55544200  
H   -2.45168300  5.41949800  3.72246400  
H   -1.88691500  4.11136200  4.79507300  
C   -1.01978300  4.81545900  1.49813100  
C   -2.33294800  5.32124600  0.86912300  
H   -2.92442800  4.49913500  0.45033100  
H   -2.10825000  6.00952500  0.04683900  
H   -2.96161600  5.86807400  1.58143400  
C   -0.17338100  4.13029900  0.40831200  
H   -0.71730900  3.30820600 -0.07181000  
H    0.75964200  3.72860700  0.81690000  
H    0.08067500  4.85380400 -0.37463100  



C   -0.21678200  6.00910500  2.05977000  
H   -0.76877300  6.56747900  2.82515500  
H    0.01829700  6.71501400  1.25557700  
H    0.73332900  5.68105200  2.49974500  
H   -0.30744800  3.54507700  3.09873500  
C   -5.30146500  2.45167900  1.48498500  
H   -4.81908600  2.63553700  0.51974000  
H   -5.58757200  3.41105800  1.92299900  
H   -6.20350500  1.85913700  1.31778600  
C   -5.10597100  1.38971600  3.78738500  
H   -4.45490800  0.88969600  4.51180000  
H   -5.96388200  0.74546100  3.58431500  
H   -5.46152400  2.32269500  4.22854200  
H   -0.09479500 -1.08563100  0.05736800  
H   -0.31475000  0.37387000 -0.97858400 
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