

ΔΔG of Ala relative to WT position (kcal/mol)

FIGURE S1. CDR3α Sequences alone can alter the interaction of TCRβ residues with MHC. (**A-C**) The energetic contribution of peptide and MHC side chains for the Vα2.8⁺ Vβ8.2⁺ (**A**) J809.B5, (**B**) J809.H1 and (**C**) 14.C6 TCRs binding to IA^b-3K. Each TCR carries the identical TCRβ sequence. Data in (**A**, **B**) has been previous published (25) and is shown for comparison to the 14.C6 interaction with IA^b-3K. See Supplementary Table S1 for values for TCR interactions with individual pMHC residues. (**D-O**) Binding of Soluble (**D**, **G**, **J** and **M**) J809.B5 TCR, (**E**, **H**, **K**, **N**) J809.H1 or (**F**, **I**, **L**, **O**) 14.C6 TCRs were analyzed for equilibrium affinity binding to immobilized (**D-F**) IA^b-3K, (**G-I**) IA^b-3K which carries an alanine substitution at the IA^b α-chain residue Q57 (Q57A), or (**M-O**) IA^b-3K which carries an alanine substitution at the IA^b α-chain residue Q61 (Q61A) via SPR. Listed K_D are the average of three independent experiments, sensograms are representative analyses.

D

P2Q

E. J809.B5:IAb-3K PDB:4P23

G. 172.10:IAu-MBP PDB:1UH3

F. 14.C6:IAb-3K PDB:4P5T

αR94

P-1E

FIGURE S2. Example of electron density for J809.B5, 14.C6 and J809.B5 Y31A TCRs bound to IA^b-3K, and the Relative Positioning of CDR1 α residue Y31 to CDR3 β loops in several crystal structure of V α 2⁺ TCRs bound to pMHC ligands. Electron density was contoured at 1.5 sigma from |2F_{obs}-F_{calc}|a_{calc} map (grey) calculated from portions of the models. (A) J809.B5 CDR3 α loop and 3K peptide with IA^b $\alpha\beta$ chains omitted. (B) J809.B5 CDR1α and CDR3β loops (C) 14.C6 CDR3α loop and 3K peptide with IA^b αβ chains omitted (D) J809.B5 Y31A CDR1a and CDR3B loops. J809.B5 TCRa chain in orange, TCRB chain in green, 14.C6 TCRa chain in cvan, J809.B5 Y31A TCRα chain in purple, TCRβ chain in brown and the 3K peptide in yellow. (E-H) The TCR CDR1α residue Y31 is positioned within 4Å of the CDR3β loop in several co-crystal structures of $V\alpha 2^+$ TCRs bound to pMHC ligands, while being at least 7Å away from the peptide (E) J809.B5 TCR bound to IA^b-3K, CDR1α loop is colored orange, CDR3β loop is colored green; PDB code 4P23. (F) 14.C6 TCR bound to IA^b-3K, CDR1α loop is colored cyan, CDR3β loop is colored magenta; PDB code 4P5T. (G) 172.10 TCR bound to IA^u-MBP, CDR1α loop is colored blue, CDR3β loop is colored mint green. PDB code 1U3H (H) 2W1S 20.4 TCR bound to IA^b-3K, CDR1α loop is colored blue, CDR3β loop is colored mint green; PDB code 3C6L. To assess the positioning of the atoms utilized for the distance measurements between the CDR1a Y31 residue and the CDR3 β loop, as well as to the peptide, composite omit maps were generated with the CDR1 α loop, the CDR3ß loop and the peptide omitted from each of the models. Fo-Fc maps for the omitted regions are shown. Clear density is observed for all CDR1a Y31 side chains suggesting its position is defined by the data for all the models. Clear density is also observed for the other atoms used for the distance measurement, except for the D7 NZ atom in the peptide lysine in 36CL. However, possible alternate rotomers of the lysine side chains would still place the side chain >7Å away from the CDR1 α Y31 side chain suggesting that no direct contacts are formed between the Y31 residue and the peptide. The B factors associated with each atom used for the distance measurements are listed.

Supplementary Table S1. Primary data for 14.C6 footprint analysis

	J809.B5			J809.H1				14.C6				
	K_d	SEM	$\Delta\Delta G$	SEM	K_d	SEM	$\Delta\Delta G$	SEM	K_d	SEM	$\Delta\Delta G$	SEM
IA ^b 3K	6	0.0	0	0	27	0	0	0	6	0.8	0.0	0.0
αK39A	45	0.2	1.2	0	218	13	1.3	0	41	2.2	1.2	0.0
αD55A	32	3.5	1	0.1	219	10	1.3	0	17	6.7	0.5	0.2
αQ57A	31	4.6	0.9	0.1	26	0.1	0	0	6	0.6	0.0	0.0
α L60A	30	5.1	0.9	0.1	137	22	0.9	0.1	33	5.1	1.0	0.1
αQ61A	151	0.0	1.9	0	35	3.1	0.1	0	6	0.8	0.0	0.0
α N62A	77	0.1	1.5	0	238	12	1.3	0	75	2.2	1.3	0.1
αV65A	43	1.7	1.1	0	73	13	0.6	0.1	26	6.2	0.8	0.2
αK67A	19	3.3	0.7	0.1	84	10	0.7	0.1	32	5.1	1.0	0.1
αH68A	17	3.1	0.6	0.1	85	8.4	0.7	0	33	5.0	1.0	0.1
αV72A	6	0.2	0	0	28	0.6	0	0	6	0.8	0.0	0.0
α K75A	8	0.5	0.2	0	34	2.2	0.1	0	11	3.7	0.3	0.2
P-2A	6	0.5	0	0	26	0.4	0	0	6	0.6	0.0	0.0
P-1A	43	0.7	1.1	0	284	10	1.4	0	36	4.4	1.0	0.1
P2A	19	4.2	0.6	0.1	249	13	1.3	0	98	2.9	1.8	0.0
P3A	259	0.0	2.2	0	240	13	1.3	0	173	3.4	2.1	0.0
P5A	458	0.0	2.5	0	177	16	1.1	0.1	82	2.5	1.7	0.0
P7A	6	0.1	0	0	27	0.5	0	0	6	0.7	0.0	0.0
P8A	7	0.6	0.1	0	31	1.7	0.1	0	9	2.3	0.2	0.1
P10A	6	0.2	0	0	28	0.4	0	0	7	1.0	0.0	0.0
P11A	8	0.7	0.1	0	28	1	0	0	6	0.7	0.0	0.0
β Ε59Α	7	0.9	0.1	0.1	31	2.3	0.1	0	9	2.5	0.2	0.1
β Υ60Α	9	1.3	0.2	0.1	31	1.3	0.1	0	8	1.3	0.1	0.1
β S63A	6	0.5	0	0	27	0.7	0	0	6	0.7	0.0	0.0
β Q64A	8	0.8	0.1	0.1	30	1.4	0.1	0	6	0.8	0.0	0.0
β Ρ65Α	7	1.0	0.1	0.1	28	7.8	0	0.1	6	0.6	0.0	0.0
β Ε66Α	8	0.7	0.1	0.1	33	3.8	0.1	0.1	17	6.7	0.5	0.2
β Ι67Α	8	1.3	0.2	0.1	44	7.4	0.3	0.1	7	0.9	0.0	0.0
β Ε69Α	8	0.9	0.2	0.1	65	11	0.5	0.1	33	5.1	1.0	0.1
β R70A	198	0.0	2	0	294	12	1.4	0	199	3.5	2.2	0.1
β R72A	7	0.5	0	0	30	0.3	0.1	0	6	0.6	0.0	0.0
β D76A	7	0.7	0	0.1	27	1.1	0	0	6	0.6	0.0	0.0
β T77A	6	0.3	0	0	129	22	0.5	0.1	24	6.6	0.7	0.2
β R80A	7	0.3	0	0	28	0.5	0	0	6	0.7	0.0	0.0
β H81A	8	1.4	0.2	0.1	123	16	0.9	0.1	23	6.7	0.7	0.2
Ε β 84Α	7	0.5	0.1	0	32	2.5	0.1	0	6	0.8	0.0	0.0

Relative equilibrium affinities (K_d) and change in Gibbs free energy ($\Delta\Delta G$) for J809.B5, J809.H1 and 14.C6 TCRs binding alanine substituted I-A^b 3K complexes. For each value the associated standard error of the mean (sem) is also reported. Data for the J809.B5 and J809.H1 TCRs has been reported previously in (Stadinski et al., 2011).

<u>T cell</u>	Peptide	MHC	EC ₅₀ ng/ml	SEM
J809.B5	ЗК	IA ^b	2	0.4
J809.B5	FMRKA	IA ^b	> 100,000	0
J809.B5 αY31A	3К	IA ^b	312	121
J809.B5 αY31A	FMRKA	IA ^b	1679	138
J809.B5 βN29A	3К	IA ^b	58	19
J809.B5 βY46A	3К	IA ^b	2107	120
J809.B5 βY848A	3К	IA ^b	> 100.000	NA
J809.B5 BE54A	3K	IA ^b	> 100.000	NA
J809.B5	3K	ΙΑ ^b αΚ39Α	> 100.000	NA
J809.B5	3K	IA ^b αQ57A	376	164
J809.B5	ЗК	IA ^b αQ61A	> 100,000	NA
I809.H1	ЗК	IA ^b	12	5
1809 H1	RCKST		3340	2577
1809 H1 aV314	3K		1	0
1809 H1 aY31A	RCKST		4258	1487
1809 H1 BN294	3K		> 100 000	1407 ΝΔ
1809 H1 BV/64	3K		× 100,000	1
1800 H1 8V8/8A	3K		> 100 000	
1809.111 PT848A	3K		2016	0
1800 H1	3K	1Vp 4K30V	28,000	2 300
1809.111 1809.111	3K	$IA^{b} \alpha 057A$	03	2,500
1809.111 1809.111	3K		0.5	0.2
1902.111	36	IA UQUIA	0.5	0.2
14.C6	3К	IA ^b	1	1
14.C6	QKKLK	IA ^b	70	15
14.C6 αY31A	3К	IA ^b	0.8	0.5
14.C6 αY31A	QKKLK	IA ^b	3	2
14.C6 βN29A	ЗК	IA ^b	49	14
14.C6 βY46A	ЗК	IA ^b	1	1
14.C6 βY848A	ЗК	IA ^b	76	4
14.C6 βE54A	ЗК	IA ^b	1	0
14.C6	ЗК	ΙΑ ^b αΚ39Α	7.9	1.4
14.C6	ЗК	IA ^b αQ57A	0.2	0.004
14.C6	ЗК	IA ^b αQ61A	0.5	0.15
J809.G3	ЗК	IA ^b	1	0
J809.G3 αY31A	ЗК	IA ^b	> 100,000	NA
J809.G3	YTRRT	IA ^b	3532	1469
J809.G3 αY31A	YTRRT	IA ^b	4254	2167
13.B1	ЗК	IA ^b	12	5
13.B1 αY31A	ЗК	IA ^b	964	346
13.B1	SKKRP	IA ^b	40764	26032
13.B1 αY31A	SKKRP	IA ^b	289	100
13.D5	ЗК	IA ^b	153833	8268
13.D5 αY31A	ЗК	IA ^b	20151	13348
13.D5	YTRRT	IA ^b	5958	3577
13.D5 α¥31A	YTRRT	IA ^b	3637	1284
14.A6	ЗК	IA ^b	10	4
14.A6 αY31A	ЗК	IA ^b	9	7
14.A6	SKKRP	IA ^b	217600	
14.Α6 αΥ31Α	SKKRP	IA ^b	1222	452

Table S2.EC	50 values for T	Г cells	and peptides	analyzed in	this study
-------------	-----------------	---------	--------------	-------------	------------