Extended Data Table 1. Primers used in Real-Time reverse transcriptase PCR | GENE | FORWARD SEQUENCE | REVERSE SEQUENCE | | |--------|---|---------------------------------------|--| | Gapdh | 5'- GCC TTC CGT GTT CCT ACC C -3' | 5'- CAG TGG GCC CTC AGA TGC -3' | | | Ahr | 5'- CCA CTG ACG GAT GAA GAA GGA -3' | 5'- ATC TCG TAC AAC ACA GCC TCT C -3' | | | Cyp1a1 | 5'- GAC ACA GTG ATT GGC AGA G -3' | 5'- GAA GGT CTC CAG AAT GAA GG -3' | | | Ido1 | 5'- TCT GCC TGT GCT GAT TGA -3' | 5'- CTG TAA CCT GTG TCC TCT CA -3' | | | Ido2 | 5'- CTC AGA CTT CCT CAC TTA ATC G -3' | 5'- GCT GCT CAC GGT AAC TCT -3' | | | Tdo2 | 5'- GTG AAC GAC GAC TGT CAT ACC G -3' | 5'- GCT GGA AAG GGA CCT GGA AT -3' | | | Foxp3 | 5' - CCC AGG AAA GAC AGC AAC CTT TT -3' | 5' - TTC TCA CAA CCA GGC CAC TTG - 3' | | | Rorc | 5' - ACA ACA GCA GCA AGT GAT GG - 3' | 5' - CCT GGA TTT ATC CCT GCT GA - 3' | | | Tgfb1 | 5' - CAC AGA GAA GAA CTG CTG TG- 3' | 5' - AGG AGC GCA CAA TCA TGT TG- 3' | | | Il10 | 5' - ACC AGC TGG ACA ACA TAC TG- 3' | 5' - CGC ATC CTG AGG GTC TTC AG- 3' | | **Extended Data Table 2.** Complete list of datasets used to assess gene expression levels of tyrosine kinases in mouse myeloid dendritic cells. | GEO
accession | Platform | Total
samples
in series | # of un-
stimulated
samples | # of LPS
stimulated
samples | GEO
accession of
used
samples | Reference | |------------------|-------------|-------------------------------|-----------------------------------|-----------------------------------|--|-----------| | GSE28231 | MOE 430 2.0 | 5 | 1 | 1 | GSM698691
GSM698692 | 1 | | GSE28340 | MOE 430 2.0 | 8 | 2 | 2 | GSM700775
GSM700776
GSM700777
GSM700778 | 2 | | GSE18115 | MOE 430 2.0 | 8 | 1 | 2 | GSM452757
GSM452759
GSM452761 | 3 | | GSE23641 | MOE 430 2.0 | 2 | 0 | 1 | GSM579979 | 4 | | GSE16761 | MOE 430 2.0 | 3 | 1 | 1 | GSM420166
GSM420165 | 5 | | GSE10246 | MOE 430 2.0 | 182 | 2 | 0 | GSM258647
GSM258648 | 6 | | GSE7219 | MOE 430 2.0 | 12 | 3 | 0 | GSM173580
GSM173581
GSM173582 | 7 | #### References - 1. Pletinckx, K., *et al.* Similar inflammatory DC maturation signatures induced by TNF or *Trypanosoma brucei* antigens instruct default Th2-cell responses. *Eur. J. Immunol.* **41**, 3479-3494 (2011). - 2. Sun, Y., et al. Targeting of microRNA-142-3p in dendritic cells regulates endotoxin-induced mortality. *Blood* **117**, 6172-6183 (2011). - 3. Clavarino, G., *et al.* Protein phosphatase 1 subunit Ppp1r15a/GADD34 regulates cytokine production in polyinosinic:polycytidylic acid-stimulated dendritic cells. *Proc. Natl. Acad. Sci. U S A* **109**, 3006-3011 (2012). - 4. O'Connell, R.M., *et al.* MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. *Immunity* **33**, 607-619 (2010). - 5. Koga, K., *et al.* Cyclic adenosine monophosphate suppresses the transcription of proinflammatory cytokines via the phosphorylated c-Fos protein. *Immunity* **30**, 372-383 (2009). - 6. Lattin, J.E., *et al.* Expression analysis of G Protein-Coupled Receptors in mouse macrophages. *Immunome Res.* **4**, 5 (2008). - 7. Lind, E.F., *et al.* Dendritic cells require the NF-κB2 pathway for cross-presentation of soluble antigens. *J. Immunol.* **181**, 354-363 (2008). Extended Data Fig. 1. Increased susceptibility to primary LPS challenge in mice treated with a TDO2 inhibitor. (a) Twelve hours before LPS challenge (10 mg/kg), WT mice were treated with vehicle, the IDO1 and IDO2 inhibitor 1-MT (200 mg/kg), or the TDO2 inhibitor 680C91 (10 mg/kg), control groups receiving 1-MT or 680C91 but no LPS. Survival was monitored every 24 h through day 8 of LPS challenge (n = 10 mice per group per experiment, in one out of three). **P < 0.001 (log-rank test). (b) Estimation of LD₅₀ (mg/kg) in mice treated with 1.25, 2.5, 5, 10, 20, 40, or 80 mg/kg LPS. n = 10 per group per dose. LD₅₀ values were calculated by curve-fitting ($r^2 \ge 0.95$) in one experiment representative of two. #### Extended Data Fig. 2. Lack of endogenous IL-10 increases susceptibility to **endotoxemia**. (a) Survival of WT mice exposed to 10 mg/kg LPS in the presence of anti–IL-10 (0.2 mg/mouse daily, for 4 d, commencing 6 h before challenge) or an isotype control. Data are from three independent experiments (mean \pm s.d.). (b) Survival of WT and $II10^{-/-}$ mice treated with 10 mg/kg LPS. **P < 0.001 (log-rank test). (c) Survival curves of mice of different genotypes challenged with 10 mg/kg LPS, with or without therapeutic subcutaneous IL-10 at 250 ng/mouse, daily, from challenge (day 0) through day 5. *P < 0.05 (IL-10 vs. vehicle). The data show that exogenous IL-10 compensates for both the TDO2 and AhR defects at the lower LPS dosage. IL-10 is protective only in TDO2 knockouts when 20 mg/kg LPS is used. # Extended Data Fig. 3. Mutation of Gln377 to Ala in AhR PAS-B domain does not alter receptor half-life, and apparently results in increased TCDD ligand potency. (a) AhR-deficient cDCs were transfected with WT or Q377A AhR. After 24 h, cells were incubated with cycloheximide (CXM) (10 μ g/ml) and harvested at different times, lysed, and analyzed for AhR expression by immunoblotting, using a specific antibody. β -tubulin was used as a loading control. Data are from one experiment of three. (b) Ratios (means \pm s.d. of three experiments) of WT or Q377A AhR to β -tubulin in transfected cDCs at different times of CHX treatment . (No differences by Student's t-test.) Extended Data Fig. 4. LPS tolerance potentiates IDO1 expression and AhR activation in splenic cDCs. (a) Real-time PCR analysis of *Ido1* mRNA expression and immunoblot analysis of IDO1 protein in peritoneal exudate macrophages (M Φ) and neutrophils (Neu) (a), as well as in splenic conventional DCs (cDCs) or plasmacytoid DCs (pDCs) (b). Cells were harvested and purified at 24 (a) or 72 (b) h of LPS rechallenge. For comparison, samples were included from mice on first exposure to 40 mg/kg LPS (unprimed), as opposed to tolerized mice (primed). Data of *Ido1* mRNA fold induction are presented as in **Fig. 2a** (mean \pm s.d. of three experiments; *P < 0.05 and **P < 0.001, Shapiro test). Immunoblotting data are from one experiment of three. (c) Real-time PCR analysis of *Ahr* and *Cyp1a1* transcript expressions in cDCs from the same mice as in b. **P < 0.001, Shapiro test. **Extended Data Fig. 5. Absolute requirement for functional AhR, but not TDO2, in LPS tolerance manifestations.** (a) Survival curves of WT and LPS-primed (0.5 mg/kg, day 0) WT (prWT) and AhR-deficient (pr $Ahr^{-}/^{-}$) mice after a second challenge (on day +7) with 40 mg/kg LPS. Survival was monitored every 24 h through day 8 of LPS challenge. n = 8-10 mice per group per experiment. One experiment of three. *P < 0.05, log-rank test. (b) Survival curves of WT and LPS-primed (10 mg/kg, day 0) WT (prWT) and TDO2-deficient (pr $Tdo2^{-}/^{-}$) mice after a second challenge (on day +7) with 40 mg/kg LPS. Survival was monitored every 24 h through day 8 of LPS challenge. n = 8-10 mice per group per experiment. One experiment of three. **P < 0.001, log-rank test. Extended Data Fig. 6. Bioinformatic data from myeloid cDCs data sets, as follows, (a) expression changes of tyrosine kinases in LPS-primed myeloid DCs as compared to untreated counterparts, and (b) \log_2 fold changes, depicted as mean values and standard errors. Extended Data Fig. 7. LPS tolerance modulates cytokine production and *Foxp3* and *Rorc* transcription in *S.* Typhimurium infection. (a) IL-6, IL-1 β , TNF- α , IL-10, and TGF- β were measured in cecum cell supernatants from LPS-tolerant mice infected with *S. enterica* Typhimurium. Data are from three independent experiments (means \pm s.d.). *P < 0.05 and **P < 0.001 (Student's *t*-test). (b) RT-PCR expression of *Foxp3* and *Rorc* transcripts in mesenteric lymph node cells from LPS-tolerant, *Salmonella*-infected mice. Data (mean \pm s.d. of three experiments) are presented as normalized transcript expression in the samples relative to normalized transcript expression in control cultures (that is, cells from vehicle-treated mice, in which fold change = 1; dotted line). *P < 0.05; **P < 0.001 (Shapiro test). Extended Data Fig. 8. *Ahr*-/- and *Ido*-/- mice are more susceptible than WT mice to *S.* Typhimurium infection. (a) Naïve mice of different genotypes were challenged intragastrically with *S.* Typhimurium. Mortality data were recorded (**P < 0.001, WT vs. all other genotypes; log-rank test) and (b) H&E staining of mouse ceca was performed at 7 days of infection. Scale bars, 50 μ m. One of three experiments. (c) Transcript expressions of *Il17a*, *Rorc*, *Il10*, and *Foxp3* were quantified in mesenteric lymph node cells. Data (mean \pm s.d. of three experiments) are presented as normalized transcript expression in the samples relative to normalized transcript expression in cells from uninfected donors, in which fold change = 1. **P < 0.001 (Shapiro test). ### Extended Data Fig. 9. LPS tolerance modulates Foxp3 and Rorc transcription in **GBS infection**. RT-PCR expression of *Foxp3* and *Rorc* transcripts in joint-draining lymph node cells from LPS-tolerant, GBS-infected mice. Data (mean \pm s.d. of three experiments) are presented as normalized transcript expression in the samples relative to normalized transcript expression in control cells (that is, cells from vehicle-treated mice, in which fold change = 1; dotted line). **P < 0.001 (Shapiro test). Extended Data Fig. 10. *Ahr*^{-/-} and *Ido*^{-/-} mice are more susceptible than WT mice to GBS immunopathology. (a) Naïve mice of different genotypes were infected with GBS (1×10^7 CFU). Mortality data were recorded (*P < 0.05 and **P < 0.001, WT vs. all other genotypes; log-rank test). (b) H&E staining of joints was performed at 10 days of infection. Scale bars, $100 \mu m$. One of three experiments. (c) Transcript expressions of *Il17a*, *Rorc*, *Il10*, and *Foxp3* were quantified in joint-draining lymph nodes. Data (mean \pm s.d. of three experiments) are presented as normalized transcript expression in the samples relative to normalized transcript expression in cells from uninfected donors, in which fold change = 1.**P < 0.001 (Shapiro test).