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Supplementary materials

I. MAXIMUM ENTROPY FORMALISM

The maximum entropy formalism allows one to estimate the probability distribution {pi} of

states {i} of a system from limited information. Briefly, the ME framework for estimating prob-

abilities {pi} involves maximizing the entropy function S({pi}) subject to constraining the values

of certain variables (1). For example, if 〈X1〉, 〈X2〉, . . . , 〈XN 〉 are the mean values of variables

X1, X2, . . . , XN respectively, then the probabilities {pi} of states i are estimated by the maximiz-

ing the constrained objective function in Eq. 1,

S({pi})−
∑
k

λk

((∑
i

pi ·Xk(i)

)
− 〈Xk〉

)
+ α

(∑
i

pi − 1

)
(1)

Here, {λk} and α are Lagrange multipliers that ensure that the constraints are satisfied and that

the probabilities are normalized. The entropy is a non-negative convex function of the probabilities

and is usually defined as (2, 3)

S({pi}) = −
∑
i

pi log pi. (2)

The maximization of Eq. 1 estimates probabilities

pi =
1

Z({λk})
exp

(
−
∑
k

λkXk(i)

)
. (3)

Here,

Z({λk}) =
∑
i

exp

(
−
∑
k

λkXk(i)

)
(4)

is the partition function. The Lagrange multipliers λk are determined by solving

−∂ logZ
∂λk

= 〈Xk〉. (5)

Notice that the probabilities depend exponentially on the constrained quantities (compare to

Eq. 9, Eq. 13, and Eq. 15 in main text).
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II. CALCULATION OF VARIOUS MOMENTS

If P (k), P (m, k), and P (m) are given by Eq. 20, Eq. 21, and Eq. 23, in the main text, the

various moments are,

m̄(k) =
∑
m

mP (m|k) = k, (6)

m̄2(k) =
∑
m

m2P (m|k) = k2 + k, (7)

〈m〉 =

∫
m̄(k)P (k) = 〈k〉 = µ. (8)

Similarly,

〈m2〉 = µ2 + µ+
µ

α
= 〈k2〉+ 〈k〉, (9)

〈mk〉 = µ2 +
µ

α
. (10)

The total noise is defined as

ηT =
〈m2〉 − 〈m〉2

〈m〉2
=

1

µ

(
1 +

1

α

)
(11)

The intrinsic noise is defined as

ηI =
1

〈m〉2

∫
(m̄2(k)− m̄(k)2)P (k)dk =

1

〈m〉2

∫
kP (k)dk =

1

µ
(12)

III. HOW TO INCORPORATE PROMOTER FLUCTUATIONS?

When the promoter fluctuations are explicitly modeled, the distribution of mRNA copy numbers

can be obtained in a closed form. Under simplifying conditions, the distribution of mRNA copy

numbers becomes a negative binomial distribution (4, 5). Here, we sketch a rough outline of

incorporating extrinsic noise beyond promoter fluctuations within the ME framework.

For simplicity, let us assume that the mRNA copy number distribution P (m;α, β) is given by

the Gamma distribution (the continuous counterpart of the negative binomial distribution). The

parameter α is related to the half life of the activated (transcribable) state of the DNA while β is

the mean number of mRNA transcripts produced when the DNA is in the activated state. If there

is no extrinsic noise beyond the promoter fluctuations, it is easy to show that

〈m〉 = αβ, (13)

〈m2〉 = αβ2 + 〈m〉2, (14)

〈m3〉 = α(α+ 1)(α+ 2)β3. (15)
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The Gamma distribution has only two free parameters and the skewness is not independent of

the second moment and is given by

γ1 =
2√
α

= 2
√
ηT. (16)

Eq. 16 roughly holds when promoter fluctuations are the major contributor to extrinsic noise. A

deviation from Eq. 16 should prompt an exploration of the cell-to-cell variation in the parameters

of the Gamma distribution themselves.

In real cells, the parameters α and β of the Gamma distribution may be variable. The ME

framework estimates the joint distribution P (α, β) from Eq. 15 of the main text. Even though the

entropy of the Gamma distribution has a closed form, inserting the entropy in Eq. 15 of the main

text and constraining the average value of α and β results in an expression for P (α, β) that does

not have a closed form. Instead, if we assume that S(α, β) ∼ log σm i.e. the entropy scales as the

variance of the mRNA copy number m (which is a good approximation), we get

P (α, β) =
ζλ+1ξ2λ+1

(
αβ2

)λ
e−αζ−βξ

Γ(λ+ 1)Γ(2λ+ 1)
. (17)

Eq. 17 is equivalent to Eq. 20 in the main text when promoter fluctuations are explicitly modeled.

Notice that the distribution of the parameters α and β themselves is described by a product of two

independent Gamma distribution. The variability in α and β can now be ascribed to other global

extrinsic factors.

Notice that P (α, β) is parametrized by three parameters λ, ζ, and ξ. The resuling marginal dis-

tribution P (m) for m will also be parametrized by three parameters. Unfortunately, this marginal

distribution doesn’t have a closed form either. Yet, we can indeed compute quantities such as the

total, intrinsic, and extrinsic noise from Eq. 17. Notice that since P (m) has three free parameters,

the skewness estimated from Eq. 17 may not be equal to twice the square root of the total noise.

Computing various moments from Eq. 17, we get

〈m〉 =
(λ+ 1)(2λ+ 1)

ζξ
, (18)

〈m2〉 =
2(λ+ 1)2(2λ+ 1)(ζ + λ+ 2)

ζ2ξ2
, (19)

〈m3〉 =
2(λ+ 1)2(2λ+ 1)(2λ+ 3)

(
3ζλ+ 2ζ(ζ + 3) + λ2 + 5λ+ 6

)
ζ3ξ3

(20)



4

The intrinsic, extrinsic, and the total noise are given by,

ηI =
2ζ

2λ+ 1
, (21)

ηE =
3

2λ+ 1
, (22)

ηT =
2ζ + 3

2λ+ 1
. (23)

And the skewness γ1 is

γ1 =
2
√
λ+ 1 4

√
2λ+ 1

(
6ζ2 + (4ζ(ζ + 3) + 11)λ+ 15ζ + 13

)
(2ζ + 3)3/4(ζξ)3/2

. (24)

The developed framework can potentially parse intrinsic and extrinsic contributions if higher

moments of the mRNA copy number are carefully estimated. Even though the theoretical frame-

work allows it, unfortunately, currently published experimental data does not permit us to do the

same.

IV. NUMERICAL SIMULATIONS

The synthesis and degradation of the mRNA of any given gene competes with the synthesis

and degradation of all other co-expressed genes. Moreover, the cellular machinery that carries out

these reactions itself comprises of proteins and mRNAs and is subject to cell to cell variation. We

devise a simple scheme to mimic the coupled dynamics of synthesis and degradation of the cellular

machinery with the dynamics of synthesis and degradation of the mRNA of a given gene.

The transcription apparatus is represented by a single protein RNAP and the mRNA degra-

dation apparatus is represented by a single protein RNAase. The rate of synthesis γ of the given

mRNA depends linearly on [RNAP] the concentration of the proxy for the RNA polymerase com-

plex. Similarly, the rate of degradation δ depends linearly on the concentration [RNAase] of the
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Parameters for the simulation

Parameter Case 1 Case 2 Case 3

γ1 2.0 2.0 2.0

γ2 2.0 2.0 2.0

γ0 0.9 1.6 1.0

κ1 0.5 0.5 0.5

κ2 0.5 0.5 0.5

δ1 0.1 0.1 0.1

δ2 0.1 0.1 0.1

δ0 0.227 0.5 0.1

∆1 0.15 0.65 0.55

∆2 0.15 0.65 0.55

[DNA]RNAP 5 5 5

[DNA]RNAase 5 5 5

[DNA]Gene 1 1 1

TABLE I. The details of the parameters for the numerical simulation of mRNA synthesis. All rates are in

s−1 and all copy numbers are integers.

proxy for the RNAase enzyme (γ = γ0[RNAP] and δ = δ0[RNAase]).

DNA
γ1−→ rRNAP

DNA
γ2−→ rRNAase

DNA
γ−→ rGene

rRNAP
κ1−→ RNAP

rRNAase
κ2−→ RNAase

rRNAP
δ1−→ φ

rRNAase
δ2−→ φ

rGene
δ−→ φ

RNAP
∆1−−→ φ

RNAase
∆2−−→ φ

The dynamics of the synthesis and degradation of the mRNA of the given gene and RNAP and

RNAase is propagated using the Gillespie’s algorithm (6) for 2 · 108 steps. Data is stored every

5000th step after an initial equilibration of 50000 steps. The initial concentrations of all species
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except the copy number of the each gene on the DNA at t = 0 was set to 0. Table I gives the

details of the conditions that were employed to construct the histograms (red points in Fig. 2 of

the main text).
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