Supporting Information

Total Syntheses of Secalonic Acids A and D

Tian Qin, and John A. Porco, Jr.*

Department of Chemistry and Center for Chemical Methodology and Library Development (CMLD-BU), Boston University, Boston, MA 02215 E-mail: porco@bu.edu

Table of Contents

I. GENERAL INFORMATION
II. EXPERIMENTAL PROCEDURES AND COMPOUND CHARCTERIZATION
III. COPPER-MEDIATED STANNANE COUPLING SCREENING
IV. NMR DATA AND UPLC COMPARISION FOR SECALONIC ACID D
V. X-RAY CRYSTALLOGRAPHIC DATA
VI. SELECT NMR SPECTRA

I. General Information

A. Instrumentation and methods

¹H NMR spectra were recorded at 400 MHz at ambient temperature with CDCl₃ (Cambridge Isotope Laboratories, Inc.) as the solvent unless otherwise stated. ¹³C NMR spectra were recorded at 100.0 MHz at ambient temperature with CDCl₃ as the solvent unless otherwise stated. Chemical shifts are reported in parts per million relative to CDCl₃ (¹H, δ 7.26; ¹³C, δ 77.0). Data for ¹H NMR are reported as follows: chemical shift, integration, multiplicity (app = apparent, br = broad, par obsc = partially obscure, ovrlp =overlapping, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet) and coupling constants. All ¹³C NMR spectra were recorded with complete proton decoupling. Infrared spectra were recorded on a Nicolet Nexus 670 FT-IR spectrophotometer. High-resolution mass spectra were obtained in the Boston University Chemical Instrumentation Center using a Waters Q-TOF mass spectrometer. Melting points were recorded on a Mel-temp (Laboratory Devices). Analytical thin layer chromatography was performed using 0.25 mm silica gel 60-F plates. Flash chromatography was performed using 200-400 mesh silica gel (Sorbent Technologies, Inc.). Preparative TLC was conducted with glass backed 1000µm silica gel 60-F plates (Silicycle, Inc.) Yields refer to chromatographically and spectroscopically pure compounds, unless otherwise stated. All other reactions were carried out in oven-dried glassware under an argon atmosphere unless otherwise noted. The ArthurTM Suite Reaction Planner (Symyx Technologies, Inc.) was used for experimental procedure planning. Analytical LC-MS experiments were performed using a Waters Acquity UPLC (Ultra Performance Liquid Chromatography) with a Binary solvent manager, SQ mass spectrometer, Water 2996 PDA (PhotoDiode Array) detector, and Evaporative Light Scattering Detector (ELSD). An Acquity UPLC BEH C18 1.7 µm column was used for analytical UPLC-MS analysis. Preparative HPLC purification was performed on a Gilson PLC 2020 Personal Purification System. A Chiralcel®OD (Chiral Technologies Inc., 250×4.6 mm I.D.) column was used for enantiomeric excess determination.

B. Reagents and solvents

HPLC grade tetrahydrofuran, methylene chloride, diethyl ether, toluene and hexanes were purchased from Fisher and VWR and were purified and dried by passing through a PURE SOLV[®] solvent purification system (Innovative Technology, Inc.). Methanol was purchased from Fisher and used without further purification. Other ACS grade solvents were purchased from Clean Harbors.

Commercial CuCl was purchased from Sigma-Aldrich (\geq 99.995% trace metals basis) and Strem (99.99%-Cu). Fresh CuCl was prepared following the reported procedure.^{S1} All other reagents and relevant catalysts were purchased from Sigma-Aldrich, Acros, Alfa Aesar, and Strem Chemicals.

^{S1} B. S. Furniss, A. J. Hannaford, P. W. G. Smith, A. R. Tatchell, *Vogel's Textbook of Practical Organic Chemistry*, **5th** ed.; John Wiley & Sons: New York, 1989.

II. Experimental Procedures and Compound Characterization

Ortho-Iodo Chromone lactone 9: a) Me₃NBnICl₂ Method: Chromone lactone 8 (1.0 g, 3.27 mmol), calcium carbonate (2.29 g, 22.86 mmol, 7.0 equiv), and Me₃NBnICl₂ (1.19 g, 3.43 mmol, 1.05 equiv) were added to a solution of CH₂Cl₂/MeOH (5 : 1, 36 mL). After stirring at room temperature for 12 h, the reaction mixture was directly filtered to remove calcium carbonate. After concentration *in vacuo*, the crude product was purified by silica gel chromatography (CH₂Cl₂/EtOAc = 30: 1) to afford a mixture of iodinated chromone lactones. By ¹H NMR integration, the ratio of *ortho: para*: diiodide: starting material was approximately 63: 5: 12: 10.

The major ortho-iodide product was verified by the following key HMBC correlation:

The aforementioned compound mixture was dissolved in 30 mL of acetone, and cesium carbonate (2.12 g, 6.53 mmol, 2.0 equiv) and dimethyl sulfate (0.824 g, 0.59 mL, 6.53 mmol, 2.0 equiv) were added to the solution. The reaction mixture was warmed to 60 °C and stirred for 2 h. After cooling to room temperature, cesium carbonate was removed by filtration. After removing volatiles *in vacuo*, the residue was purified by silica gel chromatography (hexanes/EtOAc = 3: 1) to afford the protected *ortho*-iodo chromone lactone **9** (889 mg, 61 %) as a colorless to pale yellow oil. $R_f = 0.28$ (hexanes/EtOAc = 1: 1); IR (thin film): v_{max} 2937, 1788, 1753, 1697, 1585, 1458, 1223, 1060, 759 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 7.83 (d, *J* = 8.9 Hz, 1H), 6.65 (d, *J* = 8.9 Hz, 1H), 4.80 (dd, *J* = 8.4, 4.6 Hz, 1H), 3.78 (s, 3H), 3.70 (s, 3H), 3.36 (d, *J* = 16.5 Hz, 1H), 3.01 (d, *J* = 16.5 Hz, 1H), 2.75 (ddd, *J* = 18.0, 10.2, 7.8 Hz, 1H), 2.56 (ddd, *J* = 18.0, 10.5, 5.5 Hz, 1H), 2.43 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 186.2, 175.8, 168.7, 160.9,

159.3, 144.9, 115.8, 115.4, 85.0, 84.6, 79.5, 61.6, 53.6, 41.8, 27.6, 21.6; HRMS–ESI (m/z): [M+H]⁺ calcd for C₁₆H₁₆IO₇, 446.9941; found, 446.9933.

b) TIOAc-directed method:^{S2} Chromone lactone **8** (1.0 g, 3.27 mmol), and thallium acetate (0.90 g, 3.43 mmol, 1.05 equiv) were dissolved in 30 mL of CH₂Cl₂, and I₂ (0.51 g, 3.43 mmol, 1.05 equiv) in 10 mL of CH₂Cl₂ was added into the solution by syringe pump over 1 h. After the addition was complete, the reaction was stirred at rt for 12 h during which time a precipitate was formed. The reaction mixture was directly filtered through Celite® to remove thallium salts. After concentration *in vacuo*, the crude product was purified by silica gel chromatography (CH₂Cl₂/EtOAc = 30: 1) to provide a mixture of chromone lactone compounds. The mixture was dissolved in 30 mL of acetone, and cesium carbonate (2.12 g, 6.53 mmol, 2.0 equiv), and dimethyl sulfate (0.824 g, 0.59 mL, 6.53 mmol, 2.0 equiv) were added to the solution. The flask was warmed to 60 °C and stirred for 2 h. After cooling to room temperature, cesium carbonate was removed by filtration. After removing volatiles, the residue was purified by silica gel chromatography (hexanes/EtOAc = 3: 1) to afford the protected *ortho*-iodo chromone lactone **9** (1.03 g, 71 %) as a colorless to pale yellow oil.

Chromone Lactone Stannane 10: Iodide chromone lactone **9** (889 mg, 1.99 mmol), *n*Bu₄NI (736 mg, 1.99 mmol, 1.0 equiv), Pd₂(dba)₃ (182 mg, 0.20 mmol, 0.1 equiv), PtBu₃ (162 mg, 0.80 mmol, 0.4 equiv) and bis(tributyltin) (2.31 g, 1.53 mL, 3.98 mmol, 2.0 equiv) were added to a flame-dried flask. Under a N₂ atmosphere, 20 mL of anhydrous toluene was added. The flask was warmed to 60 °C and stirred for 12 h. The crude mixture was directly purified by silica gel chromatography (hexanes/EtOAc = 4: 1) to afford the chromone lactone stannane **10** (894 mg, 72 %) as a colorless oil. R_f = 0.51 (hexanes/EtOAc = 1: 1); IR (thin film): v_{max} 2955, 2927, 1790, 1756, 1690, 1580, 1455,

^{S2} Both thallium acetate and the produced thallium salt precipitate are highly toxic, please handle with extreme care.

1377, 1287, 1161, 1058, 840 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 7.46 (d, *J* = 8.1 Hz, 1H), 6.79 (d, *J* = 8.1 Hz, 1H), 4.81 (dd, *J* = 4.3, 4.3 Hz, 1H), 3.72 (s, 3H), 3.71 (s, 3H), 3.37 (d, *J* = 16.5 Hz, 1H), 3.02 (d, *J* = 16.5 Hz, 1H), 2.80 (ddd, *J* = 17.5, 10.1, 7.8 Hz, 1H), 2.56 (ddd, *J* = 17.8, 10.5, 5.1 Hz, 1H), 2.49 (m, 1H), 2.32 (m, 1H), 1.49 (m, 6H), 1.31 (m, 6H), 1.04 (m, 6H), 0.87 (t, *J* = 7.3 Hz, 9H); ¹³C NMR (CDCl₃, 100 MHz) : δ 187.4, 176.1, 169.2, 165.0, 161.5, 144.3, 128.7, 113.6, 113.3, 84.2, 79.7, 62.2, 53.4, 42.2, 29.0, 27.7, 27.3, 21.7, 13.6, 9.9; HRMS–ESI (m/z): [M+H]⁺ calcd for C₂₈H₄₃O₇Sn, 611.2037; found, 611.2049.

Dimeric Chromone Lactones 11 and 12: Chromanone stannane **10** (100 mg, 0.16 mmol), and freshly prepared CuCl (81 mg, 0.82 mmol, 5 equiv) were placed in an open tube (Note: if commercial CuCl was used, the reaction could proceed under a N₂ atmosphere in comparable yield). Next, 1.6 mL of DMA was added into the tube and the reaction mixture was stirred at room temperature for 12 h. (Note: the reaction mixture turned from clear yellow to cloudy to completely dark). The mixture was quenched with 3 mL of saturated NH₄Cl solution and was extracted 5 times with 5 mL of EtOAc After concentrating the reaction mixture at 40 °C *in vacuo*, the crude product was directly purified by column chromatography (hexanes/EtOAc = 1: 2 to pure EtOAc) to afford the dimeric chromone lactones **11** and **12** (26-31 mg, 50-61 %, dr 1: 1, inseparable by silica gel chromatography) as a colorless gel. **11** and **12**: $R_f = 0.11$ (hexanes/EtOAc = 1: 2); ¹H NMR (CDCl₃, 400 MHz) (Note: C_s - and C_2 -symmtric compounds have highly overlapping signals in the ¹H NMR spectra except for protons 7, 2a, and 13, see below); HRMS–ESI (m/z): $[M+H]^+$ calcd for $C_{32}H_{31}O_{14}$, 639.1714; found, 639.1703.

Dimeric Chromone Lactones 13 and 14: Chromanone dimers **11** and **12** (190 mg, 0.30 mmol) were dissolved in 10 mL of CH₂Cl₂ in a 50 mL flask and the reaction mixture was cooled to -78 °C. Next, 112 μ L (4 equiv) of BBr₃ was added into the flask dropwise and the reaction mixture was slowly warmed to room temperature over 12 h. The reaction mixture was quenched with 20 mL of ice and stirred for an additional 30 min. The reaction mixture was extracted 3 times with 10 mL of EtOAc. After concentrating *in vacuo*, the crude product was directly purified by column chromatography (hexanes/EtOAc = 1: 2 to pure EtOAc) to afford the deprotected dimeric chromone lactones **13** and **14** (135 mg, 76 %, dr 1: 1, inseparable by silica gel chromatography) as a pale yellow foam. **13** and **14**: $R_f = 0.33$ (hexanes/EtOAc = 1: 2); ¹H NMR (CDCl₃, 400 MHz) (Note: C_s- and C₂-symmetric compounds have highly overlapping signals in the ¹H NMR except for protons 5 and 7, see below): dimer 1: δ 11.91 (s, 2H), 7.51 (d, *J* = 8.5 Hz, 2H), 4.79 (dd, *J* = 8.6, 4.3 Hz, 2H), 3.76 (s, 6H), 3.50 (d, *J* = 17.3 Hz, 2H), 3.12 (d, *J* = 17.3 Hz, 2H), 2.81 (ddd, *J* = 18.0, 10.2, 7.1 Hz, 2H), 2.58 (ddd,

J = 17.7, 10.5, 5.1 Hz, 2H), 2.51 (m, 2H), 2.35 (m, 2H); dimer 2: 11.90 (s, 2H), 7.50 (d, J = 8.5 Hz, 2H), 6.58 (d, J = 8.5 Hz, 2H), 4.79 (dd, J = 8.6, 4.3 Hz, 2H), 3.76 (s, 6H), 3.50 (d, J = 17.3 Hz, 2H), 3.12 (d, J = 17.3 Hz, 2H), 2.81 (ddd, J = 18.0, 10.2, 7.1 Hz, 2H), 2.58 (ddd, J = 17.7, 10.5, 5.1 Hz, 2H), 2.51 (m, 2H), 2.35 (m, 2H); HRMS \Box ESI (m/z): [M+H]⁺ calcd for C₃₀H₂₇O₁₄, 611.1401; found, 611.1415.

O-Methyl-protected Tetrahydroxanthones 16 and 17: (±)-Tetrahydroxanthone 15 (900 mg, 2.94 mmol) was placed into a flask under a N₂ atmosphere. 30 mL of CH₂Cl₂/MeOH (1: 1) was next added into the flask which was cooled down to 0 °C and stirred to fully dissolve the compound. (Note: If solids remain undissolved, an additional 1 ~ 2 mL CH₂Cl₂ was added to the solution.) Next, (trimethylsilyl)diazomethane solution (2M in ether, 7.34 mL, 14.69 mmol, 5 equiv) was added dropwise. After stirring at 0 °C for 10 to 15 min, the reaction was quenched with 10 % aqueous AcOH. After warming to room temperature, the reaction was extracted twice with 30 mL of EtOAc. The organic phase was combined, washed with brine, dried over sodium sulfate and calcium carbonate, filtered, and concentrated *in vacuo*. Purification by column chromatography (hexane/EtOAc = 1: 1 to 1: 2) afforded product 16 (188 mg, 20 %) as a pale yellow powder and 17 (531 mg, 57 %) as a yellow solid. 16: $R_f = 0.48$ (EtOAc); mp 136-137 °C (CH₂Cl₂); IR (thin film): v_{max} 3423, 1752, 1730, 1590, 1468, 1325, 1217, 1056, 760 cm⁻¹;

¹H NMR (CDCl₃, 400 MHz): δ 8.38 (s, 1H), 7.21 (t, *J* = 8.3 Hz, 1H), 6.59 (d, *J* = 8.1 Hz, 1H), 6.51 (d, *J* = 8.3 Hz, 1H), 4.50 (dd, *J* = 10.5, 7.3 Hz, 1H), 3.92 (s, 3H), 3.69 (s, 3H), 2.99 (d, *J* = 1.5 Hz, 1H, OH, chemical shift and coupling varies with concentration), 2.69 (ddd, *J* = 17.0, 5.1, 2.8 Hz, 1H), 2.54 (ddd, *J* = 17.0, 8.9, 5.5 Hz, 1H), 2.19 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) : δ 194.8, 169.6, 160.0, 156.8, 155.4, 134.1, 111.5, 109.7, 108.2, 106.0, 85.0, 73.1, 63.0, 53.0, 38.2, 25.2; HRMS–ESI (m/z): [M+H]⁺ calcd for C₁₆H₁₇O₇, 321.0974 ; found, 321.0980.

17: $R_f = 0.38$ (EtOAc); mp 192-193 °C (CH₂Cl₂); IR (thin film): v_{max} 3448, 3014, 1733, 1633, 1562, 1458, 1356, 1220, 1071, 986, 752 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 12.6 (s, 1H), 7.31 (t, J = 8.3 Hz, 1H), 6.49(1) (d, J = 8.3 Hz, 1H), 6.48(7) (d, J = 8.3 Hz, 1H), 4.27 (dd, J = 12.5, 4.5 Hz, 1H), 3.94 (s, 3H), 3.67 (s, 3H), 2.99 (s, 1H, OH, chemical shift and coupling varies with concentration), 2.80 (ddd, J = 18.7, 6.2, 1.5 Hz, 1H), 2.65 (ddd, J = 18.7, 10.8, 6.7 Hz, 1H), 2.21 (dddd, J = 23.7, 13.0, 6.4, 1.4 Hz, 1H), 2.08 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) : δ 185.1, 170.0, 169.1, 162.9, 158.5, 137.1, 110.4, 108.2, 106.8, 105.4, 86.1, 71.6, 56.3, 53.2, 24.7, 23.7; HRMS–ESI (m/z): [M+H]⁺ calcd for C₁₆H₁₇O₇, 321.0974; found, 321.0969.

Ortho-iodo Tetrahydroxanthone 18: *O*-Methyl-protected tetrahydroxanthone 17 (500 mg, 1.56 mmol), calcium carbonate (1.09 g, 10.93 mmol, 7.0 equiv), and Me₃NBnICl₂ (570 mg, 1.64 mmol, 1.05 equiv) were added to a solution of CH₂Cl₂/MeOH (5 : 1, 16 mL). After stirring at room temperature for 12 h, the reaction mixture was directly filtered to remove calcium carbonate. After concentration *in vacuo*, the crude product was

purified by silica gel chromatography (CH₂Cl₂/EtOAc = 20: 1) to afford iodide **18** (556 mg, 80 %) as a yellow powder. $R_f = 0.29$ (hexanes/EtOAc = 1: 2) mp decomp 170 °C (CH₂Cl₂); IR (thin film): v_{max} 3478, 3018, 1748, 1628, 1567, 1425, 1353, 1220, 1066, 759 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 13.57 (s, 1H), 7.73 (d, *J* = 8.7 Hz, 1H), 6.39 (d, *J* = 8.7 Hz, 1H), 4.28 (dd, *J* = 12.6, 4.6 Hz, 1H), 3.96 (s, 3H), 3.68 (s, 3H), 2.82 (ddd, *J* = 18.8, 6.4, 3.9 Hz, 1H), 2.82 (s, 1H, OH, chemical shift and coupling varies with concentration), 2.66 (ddd, *J* = 17.7, 10.8, 6.8 Hz, 1H), 2.21 (dddd, *J* = 24.2, 10.9, 6.5, 2.2 Hz, 1H), 2.10 (m, 1H); ¹³C NMR (CDCl₃, 125 MHz) : δ 184.3, 170.1, 169.7, 161.5, 158.9, 145.5, 109.3, 108.5, 104.7, 86.4, 75.1, 71.6, 56.5, 53.3, 24.9, 23.7; HRMS–ESI (m/z): [M+H]⁺ calcd for C₁₆H₁₆O₇I, 446.9941 ; found, 446.9951.

Non-Racemic Tetrahydroxanthones Chiral, (+)-20and (-)-18: (\pm) -Tetrahydroxanthone 18 (100 mg, 0.22 mmol) and 5 mL of CDCl₃ was added to a flamedried flask. The solution was gently warmed at 40 °C for 5 min until the substrate was fully dissolved. The solution was cooled to -40 °C. To a flame-dried tube was added (*R*)-HBTM 19^{S3} (6 mg, 0.022 mmol, 0.1 equiv), DIEA (17 mg, 23 µL, 0.13 mmol, 0.6 equiv), and (EtCO)₂O (17 mg, 18 µL, 0.13 mmol, 0.6 equiv) with 1 mL of CDCl₃ and the contents were mixed for 3 min. The latter solution was transferred dropwise to a solution of 18. After stirring at -40 °C for 11 h, the reaction was quenched by 0.2 mL of MeOH and was warmed to room temperature. After concentrating *in vacuo*, the crude reaction product was subjected to ¹H NMR analysis to monitor conversion (δ 6.39, 3-H for (-)-18; δ 6.31, 3-H for (+)-20). The crude product was purified by silica gel chromatography $(CH_2Cl_2/EtOAc = 20: 1 \text{ to } 10: 1)$ to afford product (+)-20 (55 mg, 49 %) as a yellow solid

^{S3} For preparation of HBTM catalysts, see: X. Li, V. B. Birman, Org. Lett. 2008, 10, 1115-1118.

and (-)-**18** (48 mg, 48 %) as a yellow powder. (+)-**20**: $R_f = 0.63$ (hexanes/EtOAc = 1: 2) mp decomp 180 °C (CH₂Cl₂); IR (thin film): v_{max} 1750, 1633, 1572, 1427, 1356, 1278, 1226, 1073, 761 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 13.44 (s, 1H), 7.68 (d, *J* = 8.7 Hz, 1H), 6.31 (d, *J* = 8.7 Hz, 1H), 5.40 (d, *J* = 12.1, 4.4 Hz, 1H), 3.92 (s, 3H), 3.65 (s, 3H), 2.77 (ddd, *J* = 18.7, 6.4, 2.6 Hz, 1H), 2.71 (ddd, *J* = 18.7, 12.4, 6.3 Hz, 1H), 2.35 (q, *J* = 7.5 Hz, 2H), 2.34 (m, 1H), 2.08 (m, 1H), 1.14 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz) : δ 184.3, 173.0, 169.3 (two carbons overlapped, *CO*₂Me and C=*COM*e), 161.2, 159.1, 145.4, 109.5, 108.4, 104.8, 84.0, 74.5, 71.7, 56.5, 53.1, 27.6, 24.3, 22.5, 8.9; HRMS–ESI (m/z): [M+H]⁺ calcd for C₁₉H₂₀O₈I, 503.0203; found, 503.0212. Enantiomers were separated using chiral UPLC analysis [10% IPA Chiralcel®OD (Chiral Technologies Inc., 250 × 4.6 mm I.D.) column]. The enantiomeric excess for (+)-**20** after kinetic resolution was 96 %. [α]_D²⁸= 55.4 ° (*c*= 0.1, CH₂Cl₂).

96 % ee (+)-20:

(-)-18:¹H NMR, ¹³C NMR, IR, and HRMS for (-)-28 were identical to data reported for (\pm)-18. Enantiomers were separated by 10% IPA Chiralcel®OD (Chiral Technologies Inc., 250 × 4.6 mm I.D.) column. The enantiomeric excess for (-)-18 after kinetic resolution was 95 %.

95 % ee (-)-**18**:

>99 % ee (-)-18: Follow the previous procedure (Kinetic resolution was performed at -40 °C for 13 h). Following this protocol, (-)-18 (46 mg, 46 %) was obtained. $[\alpha]_D^{27}$ = -84.5° $(c=0.1, CH_2Cl_2).$

>99 % ee (-)-18:

QМе

(50 % conv)

Chiral Tetrahydroxanthone (-)-17: (±)-Tetrahydroxanthone 17 (100 mg, 0.22 mmol) and 5 mL of CDCl₃ was added to a flame-dried flask. The solution was gently warmed at 40 °C for 5 min until the substrate was fully dissolved. The solution was cooled to -40 °C. To a flame-dried tube was added (*R*)-HBTM 19 (6 mg, 0.022 mmol, 0.1 equiv), DIEA (17 mg, 23 µL, 0.13 mmol, 0.6 equiv) and (EtCO)₂O (17 mg, 18 µL, 0.13 mmol, 0.6 equiv) with 1 mL of CDCl₃ and the contents were mixed for 3 min. The latter solution was transferred dropwise to the solution of 18. After stirring at -40 °C for 11 h, the reaction was quenched by 0.2 mL MeOH and warmed to room temperature. The crude product was purified by silica gel chromatography (CH₂Cl₂/EtOAc = 20: 1 to 10: 1) to afford product (-)-17 (48 mg, 48 %) as a yellow powder (X-ray data see page 34). (-)-17: ¹H NMR, ¹³C NMR, IR, and HRMS for (-)-17 were identical to data reported for (±)-17. Enantiomers were separated by 10% IPA Chiralcel®OD (Chiral Technologies Inc., 250 × 4.6 mm I.D.) column. The enantiomeric excess for (-)-17 after kinetic resolution was 96 %. [α]_D³¹= -129.0 ° (*c*= 0.1, CH₂Cl₂).

96 % ee (-)-17:

MOM-Protected Tetrahydroxanthone (+)-21: Enanotiopure tetrahydroxanthone (-)-18 (46 mg, 0.10 mmol) was dissolved in 1 mL of CH₂Cl₂ in a flame-dried flask. DMAP (1.2 mg, 0.01 mmol, 0.1 equiv), DIEA (64 mg, 87 µL, 0.50 mmol, 5 equiv), and MOMCI (40 mg, 38 µL, 0.50 mmol, 5 equiv) were added into the solution. The reaction was stirred for 12 h at room temperature. After concentration *in vacuo*, the crude product was purified by silica gel chromatography (hexanes/EtOAc = 1: 1 to 1: 2) to afford product (+)-21 (45) mg, 81 %) as a colorless to pale yellow oil. (+)-21: $R_f = 0.27$ (hexanes/EtOAc = 1: 2); IR (thin film): v_{max} 1750, 1664, 1583, 1447, 1376, 1285, 1212, 1154, 1036, 921, 737 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 7.77 (d, J = 8.8 Hz, 1H), 6.59 (d, J = 8.8 Hz, 1H), 5.33 (d, J = 6.6 Hz, 1H), 4.95 (d, J = 6.7 Hz, 1H), 4.85 (d, J = 6.6 Hz, 1H), 4.71 (d, J = 6.7 Hz, 1H), 4.22 (dd, *J* = 11.3, 4.0 Hz, 1H), 3.85 (s, 3H), 3.62 (s, 3H), 3.60 (s, 3H), 3.42 (s, 3H), 2.71 (ddd, J = 18.3, 5.7, 5.2, 4.0 Hz, 1H), 2.58 (ddd, J = 18.3, 9.8, 5.9 Hz, 1H), 2.26 (m, 1H), 2.03 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) : δ 177.4, 169.9, 167.5, 161.0, 158.1, 144.1, 115.7, 114.7, 106.8, 101.9, 96.2, 86.2, 83.4, 75.0, 58.5, 56.4, 55.8, 52.9, 24.4, 23.9; HRMS-ESI (m/z): $[M+Na]^+$ calcd for C₂₀H₂₃O₉INa, 557.0285; found, 557.0295; $[\alpha]_{D}^{30} = 148.6 \circ (c = 0.1, CH_2Cl_2).$

MOM-Protected Stannane (+)-22: MOM-protected tetrahydroxanthone (+)-21 (45 mg, 0.084 mmol), *n*Bu₄NI (16 mg, 0.042 mmol, 0.5 equiv), Pd₂(dba)₃ (7 mg, 0.008 mmol, 0.1 equiv), PtBu₃ (7 mg, 0.034 mmol, 0.4 equiv), and bis(tributyltin) (97 mg, 85 µL, 0.17 mmol, 2.0 equiv) were added to a flame-dried flask. Under a N₂ atmosphere, 0.9 mL of anhydrous dioxane was added. The flask was warmed to 50 °C and stirred for 4 h. After cooling to room temperature, solvent was removed in *vacuo*. The crude mixture was directly purified by silica gel chromatography (hexanes/EtOAc = 2: 1) to afford MOMprotected stannane (+)-22 (31 mg, 53 %) as a colorless to pale yellow oil. (+)-22: $R_f =$ 0.30 (hexanes/EtOAc = 1: 1); IR (thin film): v_{max} 2956, 1737, 1665, 1581, 1450, 1369, 1229, 1154, 1038, 823 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 7.38 (d, J = 8.0 Hz, 1H), 6.72 (d, J = 8.0 Hz, 1H), 5.32 (d, J = 6.1 Hz, 1H), 5.00 (d, J = 6.7 Hz, 1H), 4.72 (d, J =6.1 Hz, 2H), 4.24 (dd, J = 11.2, 3.9 Hz, 1H), 3.85 (s, 3H), 3.62 (s, 3H), 3.44 (s, 3H), 3.38 (s, 3H), 2.71 (ddd, J = 18.2, 4.8, 4.8 Hz, 1H), 2.58 (ddd, J = 18.2, 9.8, 5.7 Hz, 1H), 2.51 (m, 1H), 2.04 (m, 1H), 1.49 (m, 6H), 1.31 (m, 6H), 1.07 (m, 6H), 0.87 (t, J = 7.3 Hz, 9H);¹³C NMR (CDCl₃, 100 MHz) : δ 178.8, 170.3, 166.4, 163.5, 161.2, 143.3, 126.9, 113.9, 112.2, 108.0, 100.8, 96.3, 85.9, 75.2, 58.0, 56.2, 55.8, 52.7, 29.1, 27.4, 24.4, 24.1, 13.7, 10.0; HRMS-ESI (m/z): $[M+H]^+$ calcd for C₃₂H₅₁O₉Sn, 699.2562; found, 699.2593; $[\alpha]_{D}^{30} = 122.1 \circ (c = 0.1, CH_2Cl_2).$

Dimeric Tetrahydroxanthone (-)-23: MOM-protected stannane (+)-22 (30 mg, 0.043 mmol), and freshly prepared CuCl (21 mg, 0.22 mmol, 5 equiv) were placed in an open tube (Note: if commercial CuCl was used, the reaction could proceed under a N_2 atmosphere in comparable yield). Next, 0.5 mL of DMA was added into the tube and the reaction mixture was stirred at room temperature for 12 h. (Note: Note: the reaction turns

from clear yellow to cloudy to completely dark). The mixture was quenched with 3 mL of saturated NH₄Cl solution and was extracted 5 times with 3 mL. After concentrating at 40 °C *in vacuo*, the crude product was directly purified by preparative TLC (EtOAc) to afford the dimeric tetrahydroxanthone (-)-**23** (9 mg, 60 %) as a yellow solid. (-)-**23**: $R_f = 0.44$ (pure EtOAc); melting point: >220 °C (CH₂Cl₂/MeOH); IR (thin film): v_{max} 2950, 1777, 1633, 1584, 1560, 1432, 1224, 1039, 818 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 12.95 (s, 2H), 7.43 (d, *J* = 8.5 Hz, 2H), 6.52 (d, *J* = 8.5 Hz, 2H), 5.04 (d, *J* = 6.7 Hz, 2H), 4.75 (d, *J* = 6.7 Hz, 2H), 4.24 (dd, *J* = 11.9, 4.3 Hz, 2H), 3.89 (s, 6H), 3.69 (s, 6H), 3.45 (s, 6H), 2.76 (ddd, *J* = 18.1, 6.0, 2.9 Hz, 2H), 2.62 (ddd, *J* = 18.1, 10.4, 6.1 Hz, 2H), 2.32 (m, 2H), 2.06 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) : δ 185.7, 170.0, 167.8, 160.3, 158.3, 139.6, 117.7, 108.2, 106.4, 106.1, 96.4, 86.1, 75.3, 56.3, 55.8, 53.0, 24.6, 23.9; HRMS–ESI (m/z): [M+H]⁺ calcd for C₃₆H₃₉O₁₆, 727.2238; found, 727.2233; [α]_D²⁸= - 23.5 ° (*c* = 0.1, CH₂Cl₂).

Dimeric Tetrahydroxanthone (-)-24: Dimeric tetrahydroxanthone (-)-23 (5.0 mg, 0.0069 mmol) was dissolved in 1.5 mL of acetonitrile and 1.5 mL of 3M aqueous HCl. The reaction was warmed up to 60 °C and was stirred for 30 min. After cooling to room temperature, the solution was purified by preparative HPLC (C_{18} , 10-75% CH₃CN/water). The fractions were extracted with EtOAc, washed with brine, dried over Na₂SO₄, and concentrated to afford (-)-24 (3.8 mg, 89 %) as a pale yellow solid. (-)-24: mp: 223-225 °C (CH₂Cl₂); IR (thin film): v_{max} 3462, 2926, 1737, 1607, 1590, 1562, 1430, 1243, 1059 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) (Note: Compound (-)-24 has moderate solubility in CDCl₃; however, decomposition or isomerization was not observed in CDCl₃): δ 13.93 (s, 2H), 11.75 (s, 2H), 7.46 (d, *J* = 8.5 Hz, 2H), 6.63 (d, *J* = 8.5 Hz, 2H), 4.34 (dd, *J* = 11.8, 5.2 Hz, 2H), 3.74 (s, 6H), 2.83 (d, *J* = 1.0 Hz, 1H, OH, chemical shift and coupling varies with concentration), 2.68 (m, 4H), 2.22 (m, 2H), 2.12 (m, 2H); ¹³C NMR (CDCl₃, 125 MHz) : δ 187.2, 178.4, 170.1, 159.4, 158.2, 140.2, 118.3, 107.6, 106.9, 101.3, 84.4, 72.0,

53.3, 27.6, 23.8; HRMS–ESI (m/z): $[M+H]^+$ calcd for $C_{30}H_{27}O_{14}$, 611.1401; found, 611.1398; $[\alpha]_D^{29}$ = -54.3° (*c*= 0.1, CH₂Cl₂).

O-Methyl-protected Tetrahydroxanthones 26 and 27: (±)-Blennolide B 25 (900 mg, 2.81 mmol) was placed into a flask under a N₂ atmosphere. 28 mL of CH₂Cl₂/MeOH (1: 1) was next added into the flask which was cooled down to 0 °C and stirred to fully dissolve the compound. (Note: If solid remains undissolved, an additional 1 ~ 2 mL CH_2Cl_2 was added to the solution.) Next, (trimethylsilyl)diazomethane solution (2M in ether, 7.03 mL, 14.05 mmol, 5 equiv) was added dropwise. After stirring at 0 °C for 10 to 15 min, the reaction was quenched with 10% aqueous AcOH. After warming to room temperature, the reaction was extracted twice with 30 mL of EtOAc. The organic phase was combined, washed with brine, dried over sodium sulfate and calcium carbonate, filtered, and concentrated *in vacuo*. Purification by column chromatography (hexane/EtOAc = 2: 1 to 1: 1) afforded product 26 (189 mg, 20 %) as a white powder and **27** (594 mg, 63 %) as a yellow solid. **26**: $R_f = 0.37$ (hexanes/EtOAc = 1: 1); mp 174-176 °C (CH₂Cl₂); IR (thin film): v_{max} 3466, 2959, 1744, 1678, 1593, 1469, 1326, 1227, 1058, 756 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 8.35 (s, 1H), 7.20 (t, J = 8.2 Hz, 1H), 6.59 (d, J = 8.1 Hz, 1H), 6.51 (d, J = 8.3 Hz, 1H), 4.07 (d, J = 11.0 Hz, 1H), 3.91 (s, 3H), 3.67 (s, 3H), 2.95 (s, 1H, OH, chemical shift and coupling varies with concentration), 2.68 (dd, J= 16.2, 4.6 Hz, 1H), 2.38 (m, 1H), 2.23 (dd, J = 16.1, 12.6 Hz, 1H), 1.15 (d, J = 6.3 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) : δ 194.4, 169.7, 159.5, 156.8, 155.4, 134.0, 111.5, 110.2, 108.2, 106.0, 85.2, 78.4, 62.9, 52.9, 47.1, 30.6, 18.4; HRMS-ESI (m/z): [M+H]⁺ calcd for C₁₇H₁₉O₇, 335.1131; found, 335.1129.

27: $R_f = 0.35$ (hexanes/EtOAc = 1: 2); mp 202-203 °C (CH₂Cl₂); IR (thin film): v_{max} 3469, 2956, 1733, 1635, 1565, 1458, 1356, 1222, 1045, 991, 817, 733 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 12.61 (s, 1H), 7.31 (t, J = 8.3 Hz, 1H), 6.49 (d, J = 8.3 Hz, 2H), 3.94 (s, 3H), 3.88 (dd, J = 11.6, 2.6 Hz, 1H), 3.66 (s, 3H), 2.87 (d, J = 2.6 Hz, 1H, OH,

chemical shift and coupling varies with concentration), 2.84 (dd, J = 18.4, 5.7 Hz, 1H), 2.40 (m, 1H), 2.23 (dd, J = 18.4, 10.7 Hz, 1H), 1.17 (d, J = 6.5 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) : δ 185.1, 170.1, 168.3, 162.9, 158.5, 137.1, 110.3, 108.2, 106.8, 105.6, 86.5, 76.5, 56.3, 53.2, 33.5, 28.9, 17.7; HRMS–ESI (m/z): [M+H]⁺ calcd for C₁₇H₁₉O₇, 335.1131 ; found, 335.1132.

Ortho-iodo Tetrahydroxanthone 28: *O*-Methyl-protected blennolide B 27 (500 mg, 1.50 mmol), calcium carbonate (1.05 g, 10.50 mmol, 7.0 equiv), and Me₃NBnICl₂ (548 mg, 1.58 mmol, 1.05 equiv) were added to a solution of CH₂Cl₂/MeOH (5 : 1, 15 mL). After stirring at room temperature for 12 h, the reaction mixture was directly filtered to remove calcium carbonate. After concentration *in vacuo*, the crude product was purified by silica gel chromatography (CH₂Cl₂/EtOAc = 30: 1) to afford product 28 (557 mg, 81 %) as a yellow powder. R_f = 0.41 (hexanes/EtOAc = 1: 2) mp >230 °C (CH₂Cl₂); IR (thin film): v_{max} 3529, 2951, 1732, 1628, 1566, 1425, 1217, 1071, 1029, 750 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 13.56 (s, 1H), 7.73 (d, *J* = 8.7 Hz, 1H), 6.39 (d, *J* = 8.7 Hz, 1H), 3.96 (s, 3H), 3.89 (d, *J* = 11.6 Hz, 1H), 3.67 (s, 3H), 2.86 (dd, *J* = 18.5, 5.7 Hz, 1H), 2.77 (d, *J* = 1.0 Hz, 1H, OH, chemical shift and coupling varies with concentration), 2.42 (m, 1H), 2.25 (dd, *J* = 18.5, 10.7 Hz, 1H), 1.18 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 184.2, 169.8, 169.3, 161.5, 159.0, 145.5, 109.3, 108.5, 104.8, 86.7, 76.5, 75.0, 56.4, 53.3, 33.5, 28.9, 17.8; HRMS–ESI (m/z): [M+H]⁺ calcd for C₁₇H₁₈O₇I, 461.0097 ; found, 461.0101.

Chiral, **Non-Racemic Tetrahydroxanthones** (+)-29 and (-)-28: (\pm) -Tetrahydroxanthone 28 (200 mg, 0.43 mmol) and 20 mL of CDCl₃ were added to a flame-dried flask. The solution was gently warmed at 40 °C for 5 min until the substrate was fully dissolved. The solution was cooled to 0 °C. To a flame-dried tube was added ®-HBTM 19 (11.5mg, 0.043 mmol, 0.1 equiv), DIEA (38.9 mg, 52.3 µL, 0.30 mmol, 0.7 equiv), and (EtCO)₂O (39.0 mg, 38.5 μ L, 0.30 mmol, 0.7 equiv) with 2 mL of CDCl₃ and the contents were mixed for 3 min. The latter solution was transferred dropwise to a solution of 28. After stirring at 0 °C for 25 h, the reaction was quenched by 0.2 mL of MeOH, and was warmed to room temperature. After concentrating in vacuo, the crude reaction product was subjected to ¹H NMR analysis to monitor conversion (δ 6.49, 3-H for (-)-28; δ 6.39, 3-H for (+)-29). The crude product was purified by silica gel chromatography (CH₂Cl₂/EtOAc = 30: 1 to 10: 1) to afford product (+)-29 (110 mg, 49) %) as a yellow solid and (-)-28 (96 mg, 48 %) as a yellow powder. (+)-29: $R_f = 0.33$ (hexanes/EtOAc = 1: 1) mp >230 °C (CH₂Cl₂); IR (thin film): v_{max} 2951, 1751, 1634, 1570, 1426, 1351, 1218, 1079, 734 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 13.44 (s, 1H), 7.70 (d, J = 8.7 Hz, 1H), 6.31 (d, J = 8.7 Hz, 1H), 5.36 (d, J = 12.1 Hz, 1H), 3.95 (s, 3H), 3.67 (s, 3H), 2.88 (dd, J = 18.4, 5.6 Hz, 1H), 2.62 (m, 1H), 2.41 (q, J = 7.7 Hz, 2H), 2.36 $(dd, J = 18.4, 10.8 Hz, 1H), 1.20 (t, J = 7.6 Hz, 3H), 1.03 (d, J = 6.5 Hz, 3H); {}^{13}C NMR$ (CDCl₃, 100 MHz) : δ 184.2, 173.4, 169.4, 168.5, 161.2, 159.2, 145.5, 109.7, 108.4, 105.2, 85.0, 75.5, 74.6, 56.6, 53.2, 33.3, 28.4, 27.6, 17.1, 9.2; HRMS-ESI (m/z): [M+H]⁺ calcd for C₂₀H₂₂O₈I, 517.0359; found, 517.0358. Enantiomers were separated using a 10% IPA Chiralcel®OD (Chiral Technologies Inc., 250×4.6 mm I.D.) column. The enantiomeric excess for (+)-29 after kinetic resolution was 93 %. (±)-29:

Recrystallization of (+)-**29**: 110 mg 93 % ee (+)-**29** was dissolved in 3 mL of CH₂Cl₂, which followed by the addition of hexanes (10 mL). The reaction mixture was placed in a -20 °C refrigerator overnight in which case the racemate precipitated from the solution. After filtration of the solid, the solution was concentrated *in vacuo*, to afford (+)-**29** (91 mg, 83 %). $[\alpha]_D^{27}$ = 84.3 ° (*c*= 0.1, CH₂Cl₂). >**99 % ee** (+)-**29**:

(-)-28:¹H NMR, ¹³C NMR, IR, and HRMS for (-)-28 were identical to data reported for (\pm)-28. Enantiomers were separated by 10% IPA Chiralcel®OD (Chiral Technologies Inc., 250 × 4.6 mm I.D.) column. The enantiomeric excess for (-)-28 after kinetic resolution was 93 %.

93 % ee (-)-28:

Recrystallization of (-)-28: 96 mg 93 % ee (-)-**28** was dissolved in CH₂Cl₂, followed by rotovaping of the solvent afforded an oily residue. The corresponding oil was left on the bench overnight in which case (-)-**28** was obtained as clear yellow crystals. After removal of the residue oil, (-)-**28** (82 mg, 85 %) was obtained. $[\alpha]_D^{28}$ = -55.3 ° (*c*= 0.1, CH₂Cl₂).

>99 % ee (-)-28:

MOM-Protected Tetrahydroxanthone (-)-S1: Enanotiopure tetrahydroxanthone (+)-29 (91 mg, 0.18 mmol) was dissolved in 2 mL of CH₂Cl₂ in a flame-dried flask. DMAP (2.2 mg, 0.018 mmol, 0.1 equiv), DIEA (70 mg, 94 µL, 0.54 mmol, 3 equiv) and MOMCI (43 mg, 41 μ L, 0.54 mmol, 3 equiv) were added into the solution. The reaction was stirred at room temperature for 12 h. After concentrating in vacuo, the crude product was purified by silica gel chromatography (hexanes/EtOAc = 2: 1 to 1: 1) to afford product (-)-S1 (80) mg, 81 %) as a colorless to pale yellow oil. (-)-S1: $R_f = 0.42$ (hexanes/EtOAc = 1: 2); IR (thin film): v_{max} 2951, 1750, 1665, 1583, 1447, 1377, 1208, 1158, 1030, 926, 733 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 7.76 (d, J = 8.8 Hz, 1H), 6.55 (d, J = 8.8 Hz, 1H), 5.34 (d, J = 12.0 Hz, 1H), 5.30 (d, J = 6.5 Hz, 1H), 4.84 (d, J = 6.5 Hz, 1H), 3.88 (s, 3H), 3.62 (s, 3H), 3.59 (s, 3H), 2.80 (dd, J = 18.2, 5.4 Hz, 1H), 2.54 (m, 1H), 2.40 (q, J = 7.6 Hz, 2H), 2.32 (dd, J = 18.2, 10.8 Hz, 1H), 1.18 (t, J = 7.6 Hz, 3H), 1.00 (d, J = 6.6 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) : δ 177.0, 173.4, 169.5, 166.7, 161.0, 157.9, 144.2, 115.5, 114.9, 107.1, 101.9, 85.3, 83.5, 75.5, 58.5, 56.7, 53.0, 33.6, 28.6, 27.6, 16.9, 9.1; HRMS-ESI (m/z): $[M+Na]^+$ calcd for C₂₂H₂₅O₉INa, 583.0441; found, 583.0440; $[\alpha]_D^{27} =$ $-71.7 \circ (c = 0.1, CH_2Cl_2).$

MOM-Protected Stannane (-)-**30:** MOM-protected tetrahydroxanthone (-)-**S1** (80 mg, 0.14 mmol), *n*Bu₄NI (26 mg, 0.07 mmol, 0.5 equiv), Pd₂(dba)₃ (13 mg, 0.014 mmol, 0.1 equiv), P*t*Bu₃ (11 mg, 0.056 mmol, 0.4 equiv) and bis(tributyltin) (162 mg, 141 µL, 0.28 mmol, 2.0 equiv) were added to a flame-dried flask. Under a N₂ atmosphere, 1.5 mL of anhydrous dioxane was added. The flask was warmed to 50 °C and stirred for 4 h. After cooling to room temperature, the solvent was removed in *vacuo*. The crude mixture was directly purified by silica gel chromatography (hexanes/EtOAc = 2: 1) to afford the MOM-protected stannane (-)-**30** (57 mg, 56 %) as a colorless oil. (-)-**30**: R_f = 0.48 (hexanes/EtOAc = 1: 1); IR (thin film): v_{max} 2954, 1756, 1664, 1581, 1461, 1225, 1158, 1073 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 7.37 (d, *J* = 8.0 Hz, 1H), 6.69 (d, *J* = 8.0 Hz, 1H), 6.

1H), 5.36 (d, J = 12.0 Hz, 1H), 5.30 (d, J = 6.1 Hz, 1H), 4.71 (d, J = 6.1 Hz, 1H), 3.86 (s, 3H), 3.61 (s, 3H), 3.36 (s, 3H), 2.79 (dd, J = 18.1, 5.4 Hz, 1H), 2.54 (m, 1H), 2.40(1) (q, J = 7.6 Hz, 1H), 2.39(8) (q, J = 7.6 Hz, 1H), 2.32 (dd, J = 18.1, 11.8 Hz, 1H), 1.49 (m, 6H), 1.31 (m, 6H), 1.19 (dd, J = 7.6, 7.6 Hz, 3H), 1.06 (m, 6H), 1.01 (d, J = 6.6 Hz, 3H), 0.85 (t, J = 7.3 Hz, 9H); ¹³C NMR (CDCl₃, 100 MHz) : δ 178.4, 173.5, 169.9, 165,7, 163.3, 161.3, 143.4, 126.9, 113.8, 112.4, 108.2, 100.8, 84.9, 75.7, 58.0, 56.5, 52.8, 33.5, 29.1, 28.8, 27.7, 27.4, 17.0, 13.7, 10.0, 9.1; HRMS–ESI (m/z): [M+H]⁺ calcd for C₃₄H₅₃O₉Sn, 725.2719; found, 725.2726; [α]_D²⁶= -59.9 ° (c= 0.1, CH₂Cl₂).

Ester Dimeric Tetrahydroxanthone (+)-31: MOM-protected stannane (-)-30 (50 mg, 0.069 mmol), and freshly prepared CuCl (34 mg, 0.35 mmol, 5 equiv) were placed in an open tube (Note: if commercial CuCl was used, the reaction could proceed under a N₂ atmosphere in comparable yield). Next, 0.7 mL of DMA was added into the tube and the reaction mixture was stirred at room temperature for 12 h. (Note: the reaction turned from clear yellow to cloudy to completely dark). The mixture was quenched with 3 mL of saturated NH₄Cl solution and was extracted 5 times with 3 mL EtOAc. After concentrating at 40 °C in vacuo, the crude product was directly purified by preprative TLC (hexanes/EtOAc = 1: 2) to afford dimeric tetrahydroxanthone (+)-31 (16 mg, 60 %) as a yellow solid (for X-ray data, see page S41). (Note: The C₂ and C_s dimers have similar ¹H NMR spectra, and were inseparable by silica gel chromatography. If the C_s compound was present, an additional phenol signal $\delta = 12.93$ could be observed in the ¹H NMR spectrum). (+)-31: $R_f = 0.31$ (hexanes/EtOAc = 1: 2); melting point: >230 °C (CH₂Cl₂); IR (thin film): v_{max} 2962, 1754, 1633, 1584, 1566, 1422, 1357, 1220, 1042, 816 cm⁻¹: ¹H NMR (CDCl₃, 500 MHz): δ 12.90 (s, 2H), 7.40 (d, J = 8.5 Hz, 2H), 6.45 (d, J =8.5 Hz, 2H), 5.37 (d, J = 12.0 Hz, 2H), 3.91 (s, 6H), 3.69 (s, 6H), 2.85 (dd, J = 18.3, 5.5 Hz, 2H), 2.61 (m, 2H), 2.42(1) (q, J = 7.6 Hz, 2H), 2.41(5) (q, J = 7.6 Hz, 2H), 2.36 (dd, J = 18.3, 10.8 Hz, 2H), 1.21 (dd, J = 7.6, 7.6 Hz, 6H), 1.03 (d, J = 6.5 Hz, 6H); ¹³C NMR (CDCl₃, 100 MHz) : δ 185.2, 173.5, 169.7, 167.1, 160.1, 158.1, 139.7, 117.7, 108.0, 106.6, 106.2, 84.8, 75.8, 56.5, 53.1, 33.4, 28.5, 27.7, 17.1, 9.2; HRMS–ESI (m/z): [M+H]⁺ calcd for C₄₀H₄₃O₁₆, 779.2551; found, 779.2559; [α]_D²⁵= 52.7 ° (*c*= 0.1, CH₂Cl₂).

Secalonic Acid D (2): Dimeric tetrahydroxanthone (+)-31 (7.0 mg, 0.0090 mmol) was dissolved in 4 mL of acetone and 2 mL of 3M HCl solution was added. The reaction was warmed to 60 °C and was stirred under argon for 20 h. After cooling down to room temperature, the solution was diluted with 5 mL of ethyl acetate and the organics were washed 1 x 5 mL water, followed by brine, dried over sodium sulfate, filtered, and concentrated *in vacuo* to afford a yellow residue which was purified by preparative HPLC (C₁₈, 10-75% CH₃CN/water). The fractions were extracted with EtOAc, washed with brine, dried over sodium sulfate, and concentrated to afford secalonic acid D 2 (4.6 mg, 81 %) as a pale yellow solid. 2: melting point: >230 °C (CH₂Cl₂) (lit: 281-283 °C in evacuated capillary, 255-259 °C on hot stage^{S4}; 253-255 °C^{S5}); IR (thin film): v_{max} 3464, 1726, 1610, 1585, 1566, 1436, 1233, 1067 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 13.78(s, 2H), 11.75(s, 2H), 7.46 (d, J = 8.5 Hz, 2H), 6.63 (d, J = 8.5 Hz, 2H), 3.93 (dd, J = 11.3, 1.6 Hz, 2H), 3.73 (s, 6H), 2.81 (d, J = 2.2 Hz, 2H), 2.74 (dd, J = 19.1, 6.2 Hz, 2H), 2.41 (m, 2H), 2.32 (dd, J = 19.1, 10.6 Hz, 2H), 1.17 (d, J = 6.4 Hz, 6H); ¹H NMR (D₆-DMSO, 500 MHz): δ 13.60(s, 2H), 11.66(s, 2H), 7.45 (d, J = 8.5 Hz, 2H), 6.62 (d, J = 8.5 Hz, 2H), 6.01 (d, J = 5.4 Hz, 2H), 3.81 (dd, J = 10.9, 5.6 Hz, 2H), 3.60 (s, 6H), 2.66 (dd, J = 19.2, 5.4 Hz, 2H), 2.47 (dd, J = 19.2, 10.8 Hz, 2H), 2.41 (m, 2H), 1.03 (d, J = 5.5 Hz, 6H);¹³C NMR (CDCl₃, 125 MHz) : δ 187.2, 177.5, 170.3, 159.4, 158.3, 140.2, 118.2, 107.6, 106.9, 101.5, 84.7, 76.9(7), 53.3, 36.3, 29.2, 18.0; HRMS-ESI (m/z): [M+H]⁺ calcd for $C_{32}H_{31}O_{16}$, 639.1714; found, 639.1716; $[\alpha]_D^{26} = 62.0^{\circ}$ (c = 0.1, CHCl₃) (lit. $[\alpha]_{D}^{26} = 64.0^{\circ} (c = 0.14, CHCl_3)).$

⁸⁴ R. Andersen, G. Büchi, B. Kobbe, A. L. Demain J. Org. Chem. **1977**, 42, 352-353.

^{S5} P. S. Steyn, *Tetrahedron* **1970**, *26*, 51-57.

MOM-Protected Tetrahydroxanthone (+)-S2: Enanotiopure tetrahydroxanthone (-)-28 (82 mg, 0.18 mmol) was dissolved in 2 mL of CH₂Cl₂ in a flame-dried flask. DMAP (2.2 mg, 0.018 mmol, 0.1 equiv), DIEA (116 mg, 157 µL, 0.90 mmol, 5 equiv) and MOMCl (72 mg, 68 µL, 0.90 mmol, 5 equiv) were added into the solution. The reaction was warmed to 40 °C and stirred for 12 h. After concentrating *in vacuo*, the crude product was purified by silica gel chromatography (hexanes/EtOAc = 2: 1 to 1: 1) to afford product (+)-S1 (79 mg, 81 %) as a colorless to pale yellow oil. (+)-S1: $R_f = 0.43$ (hexanes/EtOAc = 1: 2); IR (thin film): y_{max} 2953, 1751, 1663, 1582, 1446, 1377, 1215, 1153, 1027, 920, 816, 730 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 7.77 (d, J = 8.8 Hz, 1H), 6.57 (d, J = 8.8 Hz, 1H), 5.32 (d, J = 6.5 Hz, 1H), 5.20 (d, J = 6.7 Hz, 1H), 4.83 (d, J = 6.5 Hz, 1H), 4.70 (d, J = 6.7 Hz, 1H), 3.86 (d, J = 3.8 Hz, 1H), 3.84 (s, 3H), 3.61 (s, 3H), 3.58 (s, 3H), 3.46 (s, 3H), 2.74 (dd, J = 18.2, 5.2 Hz, 1H), 2.46 (m, 1H), 2.23 (dd, J = 18.2, 11.0 Hz, 1H), 1.14 (d, J = 6.5 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) : δ 177.3, 169.7, 166.8, 161.1, 158.0, 144.2, 115.6, 114.7, 107.2, 101.9, 97.3, 88.1, 83.4, 80.1, 58.5, 56.5(3), 56.4(6), 52.9, 33.7, 29.8, 17.9; HRMS-ESI (m/z): [M+Na]⁺ calcd for C₂₁H₂₅O₉INa, 571.0441; found, 571.0432; $[\alpha]_D^{26} = 108.9 \circ (c = 0.1, CH_2Cl_2).$

MOM-Protected Stannane (+)-32: MOM-protected tetrahydroxanthone (+)-S2 (79 mg, 0.14 mmol), nBu_4NI (26 mg, 0.07 mmol, 0.5 equiv), $Pd_2(dba)_3$ (13 mg, 0.014 mmol, 0.1 equiv), $PtBu_3$ (11 mg, 0.056 mmol, 0.4 equiv) and bis(tributyltin) (162 mg, 141 µL, 0.28 mmol, 2.0 equiv) were added to a flame-dried flask. Under a N₂ atmosphere, 1.5 mL of anhydrous dioxane was added. The flask was warmed to 50 °C and stirred for 4 h. After cooling to room temperature, the solvent was removed in *vacuo*. The crude mixture was directly purified by silica gel chromatography (hexanes/EtOAc = 2: 1) to afford MOM-

protected stannane (+)-**31** (52 mg, 51 %) as a pale yellow oil. (+)-**32**: $R_f = 0.43$ (hexanes/EtOAc = 1: 1); IR (thin film): v_{max} 2956, 1757, 1665, 1581, 1449, 1230, 1032, 962 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 7.38 (d, J = 8.0 Hz, 1H), 6.71 (d, J = 8.0 Hz, 1H), 5.30 (d, J = 6.1 Hz, 1H), 5.25 (d, J = 6.7 Hz, 1H), 4.72(5) (d, J = 6.7 Hz, 1H), 4.71(7) (d, J = 6.1 Hz, 1H), 3.90 (d, J = 11.5 Hz, 1H), 3.84 (s, 3H), 3.61 (s, 3H), 3.48 (s, 3H), 3.36 (s, 3H), 2.74 (dd, J = 18.1, 5.2 Hz, 1H), 2.45 (m, 1H), 2.24 (dd, J = 18.1, 11.0 Hz, 1H), 1.49 (m, 6H), 1.31 (m, 6H), 1.15 (d, J = 6.5 Hz, 3H), 1.06 (m, 6H), 0.87 (t, J = 7.3 Hz, 9H); ¹³C NMR (CDCl₃, 100 MHz) : δ 178.7, 170.2, 165.7, 163.4, 161.4, 143.3, 127.0, 113.9, 112.2, 108.5, 100.8, 97.4, 87.8, 80.3, 58.1, 56.5, 56.3, 52.7, 33.8, 29.9, 29.1, 27.4, 18.0, 13.7, 10.0; HRMS–ESI (m/z): [M+H]⁺ calcd for C₃₃H₅₃O₉Sn, 713.2719; found, 713.2737; [α]_D²⁶= 66.8 ° (*c*= 0.1, CH₂Cl₂).

Dimeric Tetrahydroxanthone (-)-**33**: MOM-protected stannane (+)-**32** (50 mg, 0.071 mmol), and freshly prepared CuCl (34 mg, 0.35 mmol, 5 equiv) were placed in an open tube (Note: if commercial CuCl was used, the reaction could proceed under a N₂ atmosphere in comparable yield). Next, 0.7 mL of DMA was added into the tube and the reaction mixture was stirred at room temperature for 12 h. (Note: the reaction turned from clear yellow cloudy to completely dark). The mixture was quenched with 3 mL of a saturated NH₄Cl solution and was extracted 5 times with 3 mL EtOAc. After concentrating at 40 °C *in vacuo*, the crude product was directly purified by preparative TLC (hexane/EtOAc = 1: 2) to afford dimeric tetrahydroxanthone (-)-**33** (16 mg, 60 %) as a yellow solid. (Note: The C₂ and C₈ dimers have similar ¹H NMR spectra and were inseparable by silica gel chromatography. If any C₈ compound was present, an additional phenol signal δ = 12.95 could be observed). (-)-**33**: R_f = 0.33 (hexanes/EtOAc = 1: 2); melting point: >230 °C (CH₂Cl₂/MeOH); IR (thin film): v_{max} 2953, 1753, 1632, 1586, 1566, 1426, 1354, 1220, 1034, 816 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 12.92 (s, 2H), 7.43 (d, *J* = 8.5 Hz, 2H), 6.50 (d, *J* = 8.5 Hz, 2H), 5.26 (d, *J* = 6.7 Hz, 2H), 4.76 (d, *J* =

6.7 Hz, 2H), 3.90 (d, J = 12.8 Hz, 2H), 3.88 (s, 6H), 3.68 (s, 6H), 3.49 (s, 6H), 2.79 (dd, J = 18.2, 5.3 Hz, 2H), 2.53 (m, 2H), 2.26 (dd, J = 18.3, 11.1 Hz, 2H), 1.17 (d, J = 6.4 Hz, 6H); ¹³C NMR (CDCl₃, 100 MHz) : δ 185.6, 169.9, 167.1, 160.2, 158.3, 139.6, 117.7, 108.2, 106.5, 106.4, 97.6, 87.7, 80.5, 56.6, 56.3, 53.0, 33.6, 29.7, 18.1; HRMS–ESI (m/z): [M+H]⁺ calcd for C₃₈H₄₃O₁₆, 755.2551; found, 755.2563; [α]_D²⁹= -56.5 ° (c= 0.1, CH₂Cl₂).

Secalonic Acid A (*ent-2*): Dimeric tetrahydroxanthone (-)-33 (5.0 mg, 0.0066 mmol) was dissolved in 1.5 mL of acetonitrile and 1.5 mL of 3M HCl solution. The reaction was warmed to 60 °C and stirred for 30 min. After cooling to room temperature, the solution was directly purified by preparative HPLC (C₁₈, 10-75% CH₃CN in water). The fractions were extracted with EtOAc, washed with brine, dried over sodium sulfate, and concentrated *in vacuo* to afford secalonic acid A (*ent-2*) (3.6 mg, 85 %) as a pale yellow solid. *ent-2*:¹H NMR, ¹³C NMR, IR, and HRMS for *ent-2* were identical to data reported for 2. $[\alpha]_D^{26}$ = -64.1 ° (*c*= 0.1, CHCl₃).

III. COPPER-MEDIATED STANNANE COUPLING SCREENING

1. Screening of copper sources.

General procedure: Chromanone stannane 10 (10 mg, 0.016 mmol), and commercially available copper compounds (2.5 equiv) were placed under a N₂ atmosphere Next, 0.2 mL of DMF was added into the tube and the reaction mixture was stirred at room temperature for 1 h. The mixture was quenched with 3 mL of saturated NH₄Cl solution and was extracted 5 times with 5 mL of EtOAc After concentration, the reaction was monitored by ¹H NMR.

copper source	11+12	starting material	deiodination product
CuI	0	100	0
CuBr SMe ₂	13	74	13
CuCl	38	24	42
CuTC	0	0	100
Cu(MeCN) ₆ PF ₆	0	0	100
CuCl ₂	0	100	0
$Cu(OAc)_2 \cdot H_2O$	0	0	100
$Cu(NO_3)_2 \cdot 3H_2O$	37	6	59

2. Solvent screening.

General procedure: Chromanone stannane **10** (10 mg, 0.016 mmol) and commercially available CuCl (2.5 equiv) were placed under a N₂ atmosphere Next, 0.2 mL of solvent was added into the tube and the reaction mixture was stirred at room temperature for 2 h. The mixture was quenched with 3 mL of saturated NH₄Cl solution and was extracted 5 times with 5 mL of EtOAc After concentrating the reaction was monitored by ¹H NMR.

copper source	11+12	starting material	deiodination product
Dioxane	0	85	15
Acetone	0	56	44
MeOH	0	0	100
MeCN	0	84	16
HMPU	0	0	100
NMP	47	0	53
MeNO ₂	0	58	42
CCl ₄	0	41	59
DMA	65	0	32
DME	0	76	34
DMSO	0	46	30

3. Oxidant Screening.

General procedure: Chromanone stannane 10 (100 mg, 0.016 mmol) and freshly prepared CuCl were placed under a N_2 atmosphere Next, 1.6 mL of degassed DMF was added into the tube and the reaction mixture was stirred at room temperature. The mixture was quenched with 3 mL of saturated NH₄Cl solution and was extracted 5 times with 5 mL of EtOAc After concentration, the reaction was monitored by ¹H NMR.

copper source	11+12	starting material	deiodination product
5 eq CuCl, 2 h	<5	0	>95
5 eq CuCl, 2 h, quench with air	31	9	60
5 eq CuCl and 1 eq CuCl ₂ , 2h	42	22	36
5 eq CuCl open air, 12 h	60	24	8
5 eq CuCl and 1 eq CuCl ₂ , 12 h	61	27	12
$5 \text{ eq } Cu(NO_3)_2 \cdot 3(H_2O), 2 \text{ h}$	40	0	60

IV. NMR Data and UPLC Comparisons for Secalonic Acid D

A) ¹H NMR spectrum of synthetic secalonic acid D in comparison with literature data (CDCl₃, 7.26 ppm):

	δ (<i>J</i> H-H in Hz)				
Position	Natural Product (this work)	Natural Products	Synthetic (this work)		
	(400 MHz, CDCl ₃) ^{S6}	(100 MHz, CDCl ₃) ^{S7}	(500 MHz, CDCl ₃)		
3/3'	7.46 (d, <i>J</i> = 8.5, 2H)	7.74 (d, <i>J</i> = 8, 2H)	7.46 (d, <i>J</i> = 8.5, 2H)		
4/4'	6.63 (d, <i>J</i> = 8.5, 2H)	6.60 (d, <i>J</i> = 8, 2H)	6.63 (d, <i>J</i> = 8.5, 2H)		
5/5'	3.93 (dd, <i>J</i> = 11.2, 1.9, 2H)	3.88 (br d, <i>J</i> = 11, 2H)	3.93 (dd, <i>J</i> = 11.3, 1.6, 2H)		
6/6'	2.41 (m, 2H)		2.41 (m, 2H)		
7α/7α'	2.32 (dd, <i>J</i> = 18.8, 10.6, 2H)		2.32 (dd, <i>J</i> = 19.1, 10.6, 2H)		
7β/7β'	2.74 (dd, <i>J</i> = 18.8, 5.9, 2H)	2.74 (br d, 2H)	2.74 (dd, <i>J</i> = 19.1, 6.2, 2H)		
11/11'	1.17 (d, <i>J</i> = 6.3, 6H)	1.16 (d, <i>J</i> = 6, 6H)	1.17 (d, <i>J</i> = 6.4, 6H)		
13/13'	3.73 (s, 6H)	3.68 (s, 6H)	3.73 (s, 3H)		
1-OH/1'-OH	11.76 (s, 2H)	11.70 (s, 2H)	11.75 (s, 2H)		
5-OH/5'-	2.81 (d, <i>J</i> = 2.2, 2H)	1.54 (br s, 2H)	2.81 (d, <i>J</i> = 2.2, 2H)		
OH*					
8-OH/8'-OH	13.78 (s, 2H)	13.78 (s, 2H)	13.78 (s, 2H)		

*The chemical shift of the 5-OH peak was found to vary with concentration.

^{S6} We thank Prof. Shu-Hua Qi (South China Sea Institute of Oceanology, CAS) for kindly providing a natural sample of secalonic acid D.
^{S7} ¹H NMR data for secalonic acid A, see: C. C. Howard, R. A. W. Johnstone J. Chem. Soc., Perkin I,

^{1973, 2440-2444.}

B) 1 H NMR spectrum of synthetic secalonic acid D in comparison with literature data (D₆-DMSO, 2.50 ppm):

	δ (<i>J</i> H-H in Hz)			
Position	Natural Product (this work)	Natural Product	Synthetic (this work)	
	(400 MHz, D ₆ -DMSO)	(600 MHz, D ₆ -	(500 MHz, D ₆ -DMSO)	
		DMSO) ^{S8}		
3/3'	7.46 (d, <i>J</i> = 8.5, 2H)	7.45 (d, <i>J</i> = 8.42, 2H)	7.45 (d, <i>J</i> = 8.5, 2H)	
4/4'	6.63 (d, <i>J</i> = 8.5, 2H)	6.63 (d, <i>J</i> = 8.42, 2H)	6.62 (d, <i>J</i> = 8.5, 2H)	
5/5'	3.81 (dd, <i>J</i> = 11.1, 5.7, 2H)	3.81 (d, <i>J</i> = 9.51, 2H)	3.81 (dd, <i>J</i> = 10.9, 5.6, 2H)	
6/6'	2.30 (m, 2H)	2.31 (m, 2H)	2.30 (m, 2H)	
7α/7α'	2.48 (dd, <i>J</i> = 19.1, 10.9, 2H)	2.49 (dd, <i>J</i> = 19.80, 6.22,	2.47 (dd, <i>J</i> = 19.2, 10.8, 2H)	
		2H)		
7β/7β'	2.66 (dd, <i>J</i> = 19.0, 6.0, 2H)	2.65 (dd, <i>J</i> = 19.80, 8.42,	2.66 (dd, <i>J</i> = 19.2, 5.4, 2H)	
		2H)		
11/11'	1.03 (d, <i>J</i> = 6.5, 6H)	1.03 (d, <i>J</i> = 6.22, 6H)	1.03 (d, <i>J</i> = 5.5, 6H)	
13/13'	3.61 (s, 6H)	3.61 (s, 6H)	3.60 (s, 3H)	
1-OH/1'-OH	11.64 (s, 2H)	11.62 (s, 2H)	11.66 (s, 2H)	
5-OH/5'-	6.04 (d, <i>J</i> = 5.8, 2H)		6.01 (d, <i>J</i> = 5.4, 2H)	
OH*				
8-OH/8'-OH	13.60 (s, 2H)	13.60 (s, 2H)	13.60 (s, 2H)	

*The chemical shift of the 5-OH peak was found to vary with concentration.

⁵⁸ R. Hong, *Pharm. Bio.* **2011**, *49*, 796-799.

C) ¹³C NMR spectrum of synthetic secalonic acid D in comparison with literature data:

	δ			
Position	Natural Product (this work)	Synthetic (this work)	Natural Product	
	(100 MHz, CDCl ₃)	(125 MHz, CDCl ₃)	(150 MHz, D ₆ -	
			DMSO) ^{S8}	
1	159.4	159.4	158.9	
2	118.2	118.2	117.3	
3	140.2	140.2	140.2	
4	107.6	107.6	107.5	
4a	158.3	158.3	158.5	
5	*	76.9(7)**	75.2	
6	29.2	29.2	29.9	
7	36.2	36.3	35.8	
8	177.5	177.5	178.2	
8a	101.5	101.5	101.7	
9	187.1	187.2	186.6	
9a	106.8	106.9	106.3	
10a	84.7	84.7	85.2	
11	18.0	18.0	17.8	
12	170.3	170.3	170.0	
13	53.3	53.3	52.6	

*Due to limited amount, the signal was overlapped with the CDCl₃ peak.

**This chemical shift was also verified by HMQC correlation (see page S70).

D) UPLC comparison between synthetic secalonic acid D and the natural sample:

V. X-ray Crystallographic Data

X-ray crystallographic data for compound (-)-17:^{S9}

Crystals of compound (-)-17 suitable for X-ray analysis were obtained by slow evaporation from CHCl₃/MeOH. Crystallographic data have been deposited with the Cambridge Cystallographic Data Centre (CCDC# 961591). Copies of the data can be obtained free of charge on application to the CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+44)-1223-336-033; e-mail: deposit@ccdc.cam.ac.uk).

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT* (Bruker, 2006); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1990); program(s) used to refine structure: *SHELX*, G.M. Sheldrick, Acta Cryst. (2008). A64, 112-122; molecular graphics: O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Cryst.* **2009**, *42*, 339-341.; software used to prepare material for publication: O. V. Dolomanov,

⁸⁹ (a) Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. (b) Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. (c) Bruker (2006). SAINT. Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. (d) Bruker (2006). APEX2. Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. (e) O. V. Dolmanov, L. J. Bourhis, R. J. Cildea, J. A. K. Howard, H. Puschmann *J. Appl. Cryst.* **2009**, *42*, 339-341.
L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Cryst.* **2009**, *42*, 339-341.

Crystal data

C ₁₆ H ₁₆ O ₇	Z = 4
$M_r = 320.29$	F(000) = 672
Triclinic, P1	$D_{\rm x} = 1.432 {\rm ~Mg~m^{-3}}$
a = 7.5282 (2) Å	Cu K α radiation, $\lambda = 1.54178$ Å
b = 13.8718 (4) Å	Cell parameters from 9941 reflections
c = 14.4637 (4) Å	$\theta = 3.1 - 66.6^{\circ}$
$\alpha = 95.790 \ (1)^{\circ}$	$\mu = 0.96 \text{ mm}^{-1}$
$\beta = 97.794 \ (1)^{\circ}$	T = 100 K
$\gamma = 92.714 \ (1)^{\circ}$, colorless
V = 1485.99 (7) Å ³	$0.14 \times 0.04 \times 0.03 \text{ mm}$

Data collection

Bruker Proteum-R diffractometer	9780 independent reflections
Radiation source: rotating anode	9524 reflections with $I > 2\sigma(I)$
multilayer	$R_{\rm int} = 0.040$
φ & ω scans	$\theta_{max} = 66.6^{\circ}, \ \theta_{min} = 3.1^{\circ}$
Absorption correction: multi-scan SADABS (Sheldrick, 1997)	$h = -8\emptyset 8$
$T_{\min} = 0.684, T_{\max} = 0.753$	$k = -16\varnothing 15$
27726 measured reflections	$l = -17 \varnothing 17$

Refinement

Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.045$	$w = 1/[\sigma^2(F_o^2) + (0.0667P)^2 + 1.193P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.130$	$(\Delta/\sigma)_{max} = 0.018$
<i>S</i> = 1.12	$\Delta \rangle_{\text{max}} = 0.24 \text{ e} \text{ Å}^{-3}$
9780 reflections	Δ _{min} = -0.28 e Å ⁻³

847 parameters	Absolute structure: Flack x determined using 4416 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons and Flack (2004), Acta Cryst. A60, s61).
3 restraints	Flack parameter: 0.02 (14)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. CheckCIF Alerts and Discussion:

PLAT089_ALERT_3_C Poor Data / Parameter Ratio (Zmax < 18) ... 6.19 PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds .. 0.0064 Ang.

Discussion: The low data-to-parameter ratio is intrinsic for this sample in P1 with Z' = 4 and copper radiation. The resolution limit on this instrument is 0.84 Angstroms, and to that resolution there are not enough data to achieve a ratio of greater than 8 for 847 parameters. An attempt was made to use restraints via the SHELX SAME command to relate the two pairs of isostructural independent residues, however the imposition of these restraints led to a significantly poorer model as evidenced by the eleveated R1 value of over 9%.

The low data-to-parameter ratio also gives rise to the low C-C bond precision. Despite these limitations the resulting model is more than adequate to satisfy the goals of this crystallographic experiment.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	У	z	$U_{\rm iso}$ */ $U_{\rm eq}$	
C1B	0.9772 (6)	0.2553 (4)	0.7593 (3)	0.0218 (10)	
H1BA	0.8794	0.2169	0.7181	0.033*	

H1BB	1.0857	0.2188	0.7636	0.033*	
H1BC	1.0010	0.3165	0.7335	0.033*	
C2B	0.7678 (6)	0.3113 (3)	0.8617 (3)	0.0157 (9)	
C3B	0.6278 (6)	0.3108 (4)	0.7771 (3)	0.0182 (9)	
H3BA	0.5813	0.2431	0.7557	0.022*	
H3BB	0.6835	0.3364	0.7257	0.022*	
C4B	0.4721 (6)	0.3719 (4)	0.7983 (3)	0.0197 (10)	
H4BA	0.5120	0.4416	0.8048	0.024*	
H4BB	0.3728	0.3600	0.7453	0.024*	
C5B	0.4048 (6)	0.3474 (3)	0.8878 (3)	0.0167 (9)	
H5B	0.3664	0.2768	0.8814	0.020*	
C6B	0.5546 (6)	0.3704 (3)	0.9723 (3)	0.0162 (9)	
C7B	0.7375 (6)	0.3415 (3)	0.9508 (3)	0.0162 (9)	
C8B	0.5569 (6)	0.4811 (4)	1.0028 (3)	0.0192 (10)	
C9B	0.4424 (8)	0.6018 (4)	1.0986 (4)	0.0307 (12)	
H9BA	0.5604	0.6364	1.1172	0.046*	
H9BB	0.3722	0.6093	1.1509	0.046*	
H9BC	0.3790	0.6288	1.0443	0.046*	
C10B	0.8728 (6)	0.3447 (3)	1.0328 (3)	0.0155 (9)	
C11B	0.8044 (6)	0.3439 (3)	1.1235 (3)	0.0175 (9)	
C12B	0.6199 (6)	0.3287 (3)	1.1266 (3)	0.0160 (9)	
C13B	0.5537 (6)	0.3179 (3)	1.2105 (3)	0.0183 (9)	
H13B	0.4288	0.3054	1.2115	0.022*	
C14B	0.6745 (6)	0.3259 (4)	1.2926 (3)	0.0200 (10)	
H14B	0.6301	0.3203	1.3504	0.024*	
C15B	0.8589 (6)	0.3420 (3)	1.2934 (3)	0.0183 (9)	
H15B	0.9387	0.3472	1.3507	0.022*	
C16B	0.9238 (6)	0.3503 (3)	1.2089 (3)	0.0163 (9)	
O1B	0.9261 (4)	0.2756 (3)	0.8518 (2)	0.0204 (7)	
O2B	0.2550 (4)	0.4026 (3)	0.8990 (2)	0.0223 (7)	
H2B	0.1887	0.3748	0.9317	0.033*	
O3B	0.4652 (4)	0.5004 (3)	1.0744 (2)	0.0249 (8)	
O4B	0.6286 (5)	0.5409 (3)	0.9633 (2)	0.0255 (8)	
O5B	0.4994 (4)	0.3179 (3)	1.0458 (2)	0.0192 (7)	
O6B	1.0385 (4)	0.3465 (3)	1.0312 (2)	0.0205 (7)	
O7B	1.1034 (4)	0.3628 (3)	1.2094 (2)	0.0211 (7)	
H7B	1.1254	0.3642	1.1541	0.032*	

O2C	-0.3640 (4)	0.6661 (3)	0.6765 (2)	0.0233 (7)	
H2C	-0.444 (9)	0.626 (5)	0.641 (5)	0.035*	
C1C	0.3724 (6)	0.8163 (3)	0.5485 (3)	0.0197 (9)	
H1CA	0.2858	0.8521	0.5105	0.029*	
H1CB	0.4826	0.8120	0.5196	0.029*	
H1CC	0.4005	0.8504	0.6119	0.029*	
C2C	0.1400 (6)	0.7086 (3)	0.5868 (3)	0.0157 (9)	
C3C	0.0290 (6)	0.7942 (4)	0.6004 (3)	0.0200 (10)	
НЗСА	-0.0229	0.8117	0.5382	0.024*	
НЗСВ	0.1078	0.8502	0.6326	0.024*	
C4C	-0.1221 (6)	0.7758 (4)	0.6572 (3)	0.0216 (10)	
H4CA	-0.2072	0.8278	0.6512	0.026*	
H4CB	-0.0720	0.7774	0.7243	0.026*	
C5C	-0.2221 (6)	0.6775 (3)	0.6236 (3)	0.0182 (9)	
H5C	-0.2739	0.6773	0.5562	0.022*	
C6C	-0.0954 (6)	0.5942 (3)	0.6319 (3)	0.0170 (9)	
C7C	0.0851 (6)	0.6164 (4)	0.6006 (3)	0.0170 (9)	
C8C	-0.0764 (5)	0.5645 (4)	0.7327 (3)	0.0173 (9)	
C9C	0.0270 (7)	0.6102 (4)	0.8918 (3)	0.0251 (11)	
Н9СА	-0.0923	0.5912	0.9063	0.038*	
Н9СВ	0.0770	0.6678	0.9337	0.038*	
Н9СС	0.1062	0.5568	0.9005	0.038*	
C10C	0.1897 (6)	0.5325 (3)	0.5845 (3)	0.0147 (9)	
C11C	0.0899 (6)	0.4379 (4)	0.5674 (3)	0.0167 (9)	
C12C	-0.0994 (6)	0.4316 (3)	0.5601 (3)	0.0156 (9)	
C13C	-0.1983 (6)	0.3429 (3)	0.5370 (3)	0.0156 (9)	
H13C	-0.3257	0.3395	0.5319	0.019*	
C14C	-0.1067 (6)	0.2597 (4)	0.5218 (3)	0.0189 (9)	
H14C	-0.1732	0.1989	0.5061	0.023*	
C15C	0.0789 (6)	0.2623 (3)	0.5287 (3)	0.0169 (9)	
H15C	0.1383	0.2040	0.5189	0.020*	
C16C	0.1773 (6)	0.3508 (4)	0.5502 (3)	0.0170 (9)	
01C	0.2967 (4)	0.7206 (2)	0.5535 (2)	0.0190 (7)	
O3C	0.0123 (4)	0.6323 (2)	0.7945 (2)	0.0206 (7)	
O4C	-0.1364 (4)	0.4872 (3)	0.7514 (2)	0.0249 (8)	
O5C	-0.1919 (4)	0.5129 (2)	0.5718 (2)	0.0167 (6)	
O6C	0.3555 (4)	0.5370 (2)	0.5822 (2)	0.0198 (7)	

07C	0.3582 (4)	0.3528 (3)	0.5536 (2)	0.0207 (7)	
H7C	0.4004	0.4106	0.5622	0.031*	
C1D	0.5586 (7)	0.5644 (4)	0.3786 (4)	0.0278 (11)	
H1DA	0.4976	0.5343	0.4251	0.042*	
H1DB	0.6884	0.5704	0.3997	0.042*	
H1DC	0.5340	0.5238	0.3182	0.042*	
C2D	0.3212 (6)	0.6686 (4)	0.3362 (3)	0.0198 (10)	
C3D	0.1922 (6)	0.5822 (4)	0.3309 (3)	0.0224 (10)	
H3DA	0.1770	0.5688	0.3954	0.027*	
H3DB	0.2438	0.5250	0.3004	0.027*	
C4D	0.0090 (7)	0.5955 (4)	0.2768 (4)	0.0243 (10)	
H4DA	0.0163	0.5871	0.2086	0.029*	
H4DB	-0.0785	0.5450	0.2900	0.029*	
C5D	-0.0559 (6)	0.6944 (4)	0.3029 (3)	0.0221 (10)	
H5D	-0.0646	0.7023	0.3716	0.027*	
C6D	0.0758 (6)	0.7755 (4)	0.2811 (3)	0.0191 (10)	
C7D	0.2707 (6)	0.7576 (3)	0.3138 (3)	0.0167 (9)	
C8D	0.0459 (6)	0.7794 (3)	0.1735 (3)	0.0176 (9)	
C9D	-0.1176 (7)	0.8383 (4)	0.0447 (3)	0.0275 (11)	
H9DA	-0.0132	0.8583	0.0159	0.041*	
H9DB	-0.2148	0.8812	0.0298	0.041*	
H9DC	-0.1581	0.7713	0.0203	0.041*	
C10D	0.3943 (6)	0.8413 (4)	0.3160 (3)	0.0186 (10)	
C11D	0.3151 (6)	0.9357 (4)	0.3128 (3)	0.0183 (9)	
C12D	0.1326 (6)	0.9451 (4)	0.3226 (3)	0.0180 (9)	
C13D	0.0585 (6)	1.0337 (4)	0.3289 (3)	0.0210 (10)	
H13D	-0.0639	1.0386	0.3372	0.025*	
C14D	0.1675 (6)	1.1165 (4)	0.3229 (3)	0.0202 (10)	
H14D	0.1173	1.1781	0.3261	0.024*	
C15D	0.3472 (6)	1.1109 (4)	0.3123 (3)	0.0210 (10)	
H15D	0.4184	1.1682	0.3077	0.025*	
C16D	0.4227 (6)	1.0216 (4)	0.3085 (3)	0.0183 (9)	
01D	0.4937 (4)	0.6596 (2)	0.3678 (2)	0.0218 (7)	
O2D	-0.2272 (4)	0.6985 (3)	0.2527 (3)	0.0263 (8)	
H2D	-0.2835	0.7406	0.2806	0.039*	
O3D	-0.0680 (4)	0.8445 (3)	0.1462 (2)	0.0218 (7)	
O4D	0.1140 (5)	0.7242 (3)	0.1216 (2)	0.0312 (9)	

O5D	0.0242 (4)	0.8640 (2)	0.3285 (2)	0.0186 (7)	
O6D	0.5610 (4)	0.8378 (3)	0.3219 (2)	0.0236 (7)	
O7D	0.5989 (4)	1.0178 (3)	0.3022 (2)	0.0231 (7)	
H7D	0.6301	0.9611	0.3079	0.035*	
C1A	1.0019 (6)	0.1167 (4)	1.0952 (3)	0.0237 (10)	
H1AA	0.9355	0.1555	1.1378	0.036*	
H1AB	1.1176	0.1509	1.0922	0.036*	
H1AC	1.0225	0.0536	1.1185	0.036*	
C2A	0.7284 (6)	0.0669 (3)	0.9911 (3)	0.0172 (9)	
C3A	0.6326 (6)	0.0642 (4)	1.0758 (3)	0.0222 (10)	
НЗАА	0.6136	0.1315	1.1007	0.027*	
НЗАВ	0.7099	0.0352	1.1253	0.027*	
C4A	0.4521 (6)	0.0066 (4)	1.0549 (3)	0.0214 (10)	
H4AA	0.4720	-0.0636	1.0506	0.026*	
H4AB	0.3821	0.0219	1.1071	0.026*	
C5A	0.3451 (6)	0.0296 (4)	0.9637 (3)	0.0216 (10)	
H5A	0.3206	0.1000	0.9694	0.026*	
C6A	0.4488 (6)	0.0074 (4)	0.8799 (3)	0.0180 (9)	
C7A	0.6471 (6)	0.0379 (3)	0.9023 (3)	0.0174 (9)	
C8A	0.4138 (5)	-0.1009 (3)	0.8431 (3)	0.0157 (9)	
C9A	0.4802 (7)	-0.2607 (4)	0.8718 (4)	0.0248 (10)	
H9AA	0.3512	-0.2791	0.8597	0.037*	
H9AB	0.5370	-0.2956	0.9224	0.037*	
H9AC	0.5339	-0.2774	0.8147	0.037*	
C10A	0.7401 (6)	0.0348 (3)	0.8194 (3)	0.0147 (9)	
C11A	0.6257 (6)	0.0370 (3)	0.7293 (3)	0.0156 (9)	
C12A	0.4421 (6)	0.0547 (3)	0.7265 (3)	0.0153 (9)	
C13A	0.3354 (6)	0.0679 (3)	0.6437 (3)	0.0179 (9)	
H13A	0.2126	0.0812	0.6432	0.022*	
C14A	0.4125 (6)	0.0613 (4)	0.5611 (3)	0.0193 (9)	
H14A	0.3402	0.0700	0.5038	0.023*	
C15A	0.5915 (6)	0.0424 (3)	0.5599 (3)	0.0178 (9)	
H15A	0.6399	0.0367	0.5024	0.021*	
C16A	0.6993 (6)	0.0319 (3)	0.6438 (3)	0.0158 (9)	
01A	0.8990 (4)	0.1021 (3)	1.0028 (2)	0.0226 (7)	
O2A	0.1803 (4)	-0.0261 (3)	0.9514 (2)	0.0256 (8)	
H2A	0.1042	-0.0008	0.9149	0.038*	

O3A	0.5076 (4)	-0.1560 (2)	0.8994 (2)	0.0211 (7)	
O4A	0.3150 (4)	-0.1314 (3)	0.7729 (2)	0.0252 (7)	
O5A	0.3645 (4)	0.0612 (2)	0.8071 (2)	0.0172 (7)	
06A	0.9060 (4)	0.0298 (2)	0.8217 (2)	0.0201 (7)	
07A	0.8753 (4)	0.0177 (2)	0.6421 (2)	0.0188 (7)	
H7A	0.9274	0.0173	0.6973	0.028*	

X-ray crystallographic data for compound (+)-31:^{S9}

Crystals of compound (+)-**31** suitable for X-ray analysis were obtained by slow evaporation from $CH_2Cl_2/MeOH$. Crystallographic data have been deposited with the Cambridge Cystallographic Data Centre (CCDC# 961592). Copies of the data can be obtained free of charge on application to the CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+44)-1223-336-033; e-mail: <u>deposit@ccdc.cam.ac.uk</u>).

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT* (Bruker, 2006); program(s) used to refine structure: *SHELX*, G.M. Sheldrick, Acta Cryst. (2008). A64, 112-122; molecular graphics: O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Cryst.* **2009**, *42*, 339-341.; software used to prepare material for publication: O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Cryst.* **2009**, *42*, 339-341.; software used to prepare material for publication: O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Cryst.* **2009**, *42*, 339-341.

Crystal data

$C_{40}H_{42}O_{16}$	F(000) = 820
----------------------	--------------

$M_r = 778.73$	$D_{\rm x} = 1.415 {\rm ~Mg~m}^{-3}$
Monoclinic, C2	Cu K α radiation, $\lambda = 1.54178$ Å
Hall symbol: C 2y	Cell parameters from 9067 reflections
a = 14.7105 (5) Å	$\theta = 5.4-66.5^{\circ}$
<i>b</i> = 7.6108 (3) Å	$\mu = 0.93 \text{ mm}^{-1}$
c = 16.3778 (5) Å	T = 100 K
$\beta = 94.668 \ (1)^{\circ}$	Block, yellow
$V = 1827.55 (11) \text{ Å}^3$	$0.12 \times 0.09 \times 0.08 \text{ mm}$
Z = 2	

Data collection

Bruker Proteum-R diffractometer	3173 independent reflections
Radiation source: rotating anode	3166 reflections with $I > 2\sigma(I)$
multilayer	$R_{\rm int} = 0.034$
ω & φ scans	$\theta_{max}=66.6^\circ,\theta_{min}=2.7^\circ$
Absorption correction: multi-scan SADABS (Sheldrick, 1997)	$h = -17 \rightarrow 17$
$T_{\min} = 0.717, T_{\max} = 0.753$	$k = -8 \rightarrow 9$
46030 measured reflections	$l = -19 \rightarrow 19$

Refinement

Refinement on F^2	Secondary atom site location: inferred from neighbouring sites
Least-squares matrix: full	Hydrogen site location: mixed
$R[F^2 > 2\sigma(F^2)] = 0.025$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.085$	$w = 1/[\sigma^2(F_o^2) + (0.0553P)^2 + 0.3657P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.25	$(\Delta/\sigma)_{max} = 0.002$
3173 reflections	$\Delta angle_{max} = 0.28 \text{ e} \text{ Å}^{-3}$
260 parameters	$\Delta \rangle_{min} = -0.33 \text{ e} \text{ Å}^{-3}$
1 restraint	Absolute structure: Flack x determined using 1426 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons and Flack (2004), Acta Cryst. A60, s61).
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.03 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. CheckCIF Alert and Discussion:

PLAT089_ALERT_3_C Poor Data / Parameter Ratio (Zmax < 18) .. 6.73

Discussion:

Fractional at	omic coordinates	and isotropic or	r equivalent is	otropic dis	placement
parameters (Å ²)				

	x	у	z	$U_{\rm iso}$ */ $U_{\rm eq}$	
01	0.24591 (8)	0.3284 (2)	0.10722 (7)	0.0157 (3)	
O2	0.17302 (8)	0.47131 (19)	0.25419 (8)	0.0149 (3)	
03	0.45263 (8)	0.4489 (2)	0.40019 (8)	0.0184 (3)	
04	0.15792 (9)	0.3418 (2)	0.54045 (8)	0.0194 (3)	
05	0.30708 (9)	0.3181 (2)	0.47298 (8)	0.0208 (3)	
O6	0.13743 (9)	0.1296 (2)	0.22556 (9)	0.0219 (3)	
07	0.28237 (9)	0.0523 (2)	0.26256 (9)	0.0203 (3)	
08	0.18022 (10)	0.5851 (2)	0.06538 (9)	0.0253 (4)	
C1	0.09083 (17)	0.4160 (3)	-0.07583 (13)	0.0282 (5)	
H1A	0.1379	0.4774	-0.1038	0.042*	
H1B	0.0480	0.5019	-0.0563	0.042*	
H1C	0.0580	0.3346	-0.1141	0.042*	
C2	0.13537 (14)	0.3136 (3)	-0.00324 (12)	0.0214 (5)	
H2A	0.0875	0.2500	0.0240	0.026*	
H2B	0.1774	0.2251	-0.0236	0.026*	
C3	0.18762 (13)	0.4287 (3)	0.05864 (12)	0.0171 (4)	
C4	0.29700 (13)	0.4106 (3)	0.17597 (11)	0.0145 (4)	

H4A	0.2944	0.5411	0.1692	0.017*	
C5	0.25174 (12)	0.3587 (3)	0.25375 (11)	0.0140 (4)	
C6	0.12662 (13)	0.4611 (3)	0.32366 (11)	0.0144 (4)	
C7	0.03663 (13)	0.5134 (3)	0.31714 (12)	0.0181 (4)	
H7	0.0079	0.5503	0.2659	0.022*	
C8	-0.01161 (13)	0.5112 (3)	0.38706 (12)	0.0183 (4)	
H8	-0.0733	0.5496	0.3825	0.022*	
С9	0.02670 (12)	0.4550 (3)	0.46333 (11)	0.0162 (4)	
C10	0.11853 (13)	0.4002 (3)	0.46859 (12)	0.0154 (4)	
C11	0.16966 (13)	0.4044 (3)	0.39897 (12)	0.0146 (4)	
C12	0.39583 (12)	0.3500 (3)	0.17799 (11)	0.0149 (4)	
H12	0.3975	0.2200	0.1870	0.018*	
C13	0.44894 (12)	0.4384 (3)	0.25071 (11)	0.0155 (4)	
H13A	0.5107	0.3860	0.2581	0.019*	
H13B	0.4561	0.5647	0.2383	0.019*	
C14	0.40392 (13)	0.4210 (3)	0.32927 (11)	0.0137 (4)	
C15	0.54787 (12)	0.4936 (3)	0.40078 (12)	0.0215 (5)	
H15A	0.5711	0.5272	0.4564	0.032*	
H15B	0.5552	0.5921	0.3634	0.032*	
H15C	0.5820	0.3919	0.3830	0.032*	
C16	0.31381 (13)	0.3827 (3)	0.33106 (11)	0.0141 (4)	
C17	0.26768 (13)	0.3640 (3)	0.40634 (11)	0.0145 (4)	
C18	0.21525 (12)	0.1679 (3)	0.24524 (11)	0.0148 (4)	
C19	0.25591 (17)	-0.1312 (3)	0.25702 (15)	0.0261 (5)	
H19A	0.3089	-0.2052	0.2730	0.039*	
H19B	0.2331	-0.1586	0.2006	0.039*	
H19C	0.2078	-0.1537	0.2937	0.039*	
C20	0.43957 (14)	0.3899 (3)	0.09859 (12)	0.0197 (5)	
H20A	0.5017	0.3424	0.1020	0.030*	
H20B	0.4417	0.5173	0.0904	0.030*	
H20C	0.4034	0.3355	0.0524	0.030*	
H4	0.209 (2)	0.318 (4)	0.5288 (17)	0.030*	

VI. Select NMR Spectra

Key HMQC data for secalonic acid D

