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Table	S1	

	

	

	
Exemplar Decision	

mean SEM mean SEM	

Observed	
data	PLV	

Category	
Performance	

0.4663	 0.0038	 0.4634	 0.0033	

Category	
Learning	 0.4656	 0.0033	 0.4697	 0.0033	

SR	
Learning	 0.4571	 0.0031	 0.4506	 0.0029	

Surrogate	
data	PLV	

Category	
Performance	

0.3925	 0.0007	 0.3937	 0.0007	

Category	
Learning	

0.3913	 0.0005	 0.3977	 0.0006	

SR	
Learning	 0.3885	 0.0005	 0.3964	 0.0007	

	

	

Table	S1	–	Synchrony	in	observed	and	surrogate	data.		Mean	PLV	and	the	corresponding	SEM	of	
all	PFC‐STR	pairs	of	electrodes	as	a	function	of	trial	epoch	and	experimental	stage,	in	observed,	
uncorrected	data	(top	3	rows)	and	in	surrogate	data	(bottom	3	rows).		Surrogate	data	were	
generated	by	randomly	shuffling	the	trials	200	times	prior	to	computation	of	PLV.		The	surrogate‐
data	PLV	was	an	estimate	of	the	bias	in	the	PLV	measure,	and,	to	generate	the	main	paper’s	results,	
the	surrogate‐data	PLV	was	subtracted	from	the	observed	PLV.		This	correction	was	implemented	
at	each	trial.		 	



6	
	

Supplemental	Experimental	Procedures	

Animals	

Data	were	collected	from	2	adult	female	rhesus	monkeys	(Macaca	mulatta),	5‐9	kg.		The	animals	
were	taken	care	of	in	accordance	with	the	National	Institutes	of	Health	guidelines	and	the	policies	
of	the	Massachusetts	Institute	of	Technology	Committee	for	Animal	Care.		We	had	spent	approx.	1.5	
years	training	the	animals	on	this	task	and	exploring	various	different	experimental	designs	before	
we	started	collecting	neurophysiological	data	using	the	current	design	(see	below).		Both	animals	
were	trained	on	the	category	learning	task	until	they	reached	similar	levels	of	proficiency.	

Task	Design	

The	task	design	is	shown	in	Fig.	1	and	has	been	described	in	detail	in	our	previous	report	from	this	
dataset	(Antzoulatos	and	Miller,	2011).		Experimental	control	was	implemented	via	Cortex	(NIMH,	
Laboratory	of	Neuropsychology),	infrared	eye‐tracking	via	Eyelink	1000	(SR	Research	Ltd,	
Mississauga,	Canada)	and	neurophysiological	recordings	via	the	MAP	system	(Plexon	Inc,	Dallas	
TX).		Visual	stimuli	were	presented	at	full	contrast,	on	a	CRT	monitor	(at	a	distance	of	approx.	50	cm	
from	the	animal),	refreshing	at	100	Hz.		Trials	began	when	the	animal	maintained	fixation	on	a	
central	target	for	0.7	s,	following	which,	a	randomly	chosen	exemplar	from	either	category	was	
presented	for	0.6	s.		One	second	after	the	offset	of	the	exemplar,	the	fixation	target	was	
extinguished	and	2	saccade	targets	appeared	at	5	o	to	the	left	and	right	of	the	center	of	fixation.		The	
animal	had	to	make	a	single	and	direct	saccade	to	the	correct	target	within	1s,	and	maintain	fixation	
on	it	for	200	ms	for	reward	(drops	of	juice).		In	the	case	of	incorrect	response	(error	trials),	there	
was	a	5‐s	timeout,	during	which	the	exemplar	was	presented	again,	at	the	location	of	the	correct	
target.	

Category	exemplars	were	static	constellations	of	7	randomly	located	dots	(0.4o	in	diameter;	Fig.	1),	
and	subtended	a	6x6‐degree	spatial	window,	centered	on	the	fixation	target.		For	each	daily	
recording	session,	we	started	by	constructing	a	new	pair	of	category	prototypes.		We	took	certain	
precautions	(Antzoulatos	and	Miller,	2011;	Vogels	et	al.,	2002)	to	ensure	an	intermediate	level	of	
task	difficulty	and	to	increase	the	likelihood	that	the	animals	would	learn	the	new	categories	in	a	
single,	daily,	recording	session	(no	categories	were	tested	in	more	than	1	sessions):	Within	each	
prototype,	all	dots	had	to	be	more	than	0.8o	away	from	each	other	(i.e.,	a	distance	equal	to	2	dots),	
no	more	than	3	pairs	of	dots	between	prototypes	were	allowed	to	be	closer	than	1o,	and	the	average	
Euclidean	distance	between	prototypes	had	to	be	between	1.6o	‐	2.2o.		The	next	step	was	to	create	
the	category	exemplars.		To	do	so,	each	dot	of	the	corresponding	prototype	was	shifted	to	a	random	
direction	and	distance	from	its	original	location.		Distance	from	original	location	was	tiered	at	5	
levels,	each	tier	being	one	extra	dot‐diameter	(0.4o)	away	from	the	original	location.		The	
probability	of	each	dot	to	land	in	any	one	of	the	5	tiers	was	determined	based	on	the	originally	
published	levels	of	distortion	2	and	3	(Antzoulatos	and	Miller,	2011;	Posner	et	al.,	1967).		This	led	
the	majority	of	dots	(63%)	to	shift	by	only	1	dot	away	(i.e.	to	tier	1).		However,	because	the	
direction	of	shift	could	vary	randomly	by	360o	and	independently	for	each	of	the	7	dots	comprising	
the	exemplar,	the	overall	difference	of	an	exemplar	from	the	original	prototype	was	substantial.		No	
dot	was	allowed	to	stay	in	the	same	location	as	in	the	prototype,	or	at	a	distance	closer	than	0.8o	
from	another	dot,	and	no	more	than	2	pairs	of	dots	across	exemplars	could	be	closer	than	0.5o	
(approx.	1	dot‐diameter).	
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On	each	trial,	a	randomly	chosen	exemplar	was	tested,	with	trials	from	both	categories	randomly	
interleaved	throughout	the	recording	session.		The	animals	advanced	through	a	minimum	of	8	
blocks,	each	of	which	included	twice	as	many	exemplars	as	the	block	before	it	(block	1	included	1	
exemplar	per	category).		Each	block	was	complete	when	the	animals'	performance	reached	80%	
correct	at	the	last	20	trials	(all	analyses	were	performed	on	the	minimum	of	16	correct	trials	per	
block).		No	exemplar	was	allowed	to	be	tested	in	more	than	2	consecutive	blocks.		The	behavioral	
performance	criterion	we	employed	led	some	blocks	to	be	terminated	before	all	exemplars	had	
been	tested.		It	was	necessary	to	avoid	prolonging	a	block	too	much,	so	the	animal	would	not	form	
habitual	SR	associations	that	would	impede	abstraction	of	the	essence	of	each	category(Antzoulatos	
and	Miller,	2011).		Distinction	of	learning	in	3	stages	relied	on	the	same	criteria	we	previously	
employed	(Antzoulatos	and	Miller,	2011):	The	first	2	blocks	in	each	experiment	were	assigned	to	
learning	stage	1	(SR	Learning)	because	they	only	tested	1‐2	exemplars	per	category,	whose	
frequent	repetitions	allowed	for	learning	of	individual	SR	associations.		All	blocks	after	the	2nd,	and	
until	a	category	performance	criterion	was	met	(see	below),	were	classified	as	learning	stage	2	
(Category	Learning).		At	this	stage,	the	likelihood	of	any	single	exemplar	to	be	repeated	was	
gradually	diminishing,	as	more	and	more	exemplars	were	introduced	in	each	block.		We	considered	
category	learning	to	be	complete	when	the	animals	could	classify	correctly	the	majority	(75%)	of	
each	category's	exemplars	on	their	first	trial.		The	first	2	blocks	meeting	this	criterion	were	
classified	as	stage	3	(Category	Performance),	and	asymptotic	performance	at	this	stage	relied	
almost	exclusively	on	a	single	trial	per	exemplar.		The	neurophysiological	results	were	averaged	
across	all	blocks	of	each	stage.	

Neural	Recordings	and	Data	Analysis	

Guided	by	the	animals'	structural	MRI	images,	simultaneous	multi‐electrode	recordings	were	made	
from	the	right	lateral	prefrontal	cortex	(PFC;	dorsal	and	ventral	regions)	and	the	head	and	body	of	
the	right	caudate	nucleus	of	the	striatum	(STR;	see	Antzoulatos	and	Miller,	2011	for	precise	
anatomical	locations).		Two	custom‐made	multi‐electrode	arrays	(8‐16	tungsten	electrodes,	FHC)	
were	lowered	at	different	sites	in	the	animals'	brain	every	day	of	recording.		Because	the	electrodes	
could	be	guided	either	individually	or	in	pairs,	apart	from	varying	their	anteroposterior	and	
mediolateral	coordinates,	we	could	also	vary	their	exact	depth	so	as	to	maximize	the	yield	of	neural	
signals.		Electrode	recordings	were	first	fed	to	a	unity‐gain	headstage	and	were	referenced	to	
ground.		Local	field	potentials	(LFPs)	were	separated	from	spiking	signals	online	at	the	
preamplifier,	using	a	0.7Hz	‐	300Hz	bandpass	filter,	were	amplified	x1000,	and	then	sampled	at	1	
KHz	rate.		To	ensure	that	only	signals	from	active	regions	of	the	brain	were	collected,	LFPs	were	
recorded	only	from	sites	that	also	displayed	spiking	activity	(a	total	of	84	PFC	sites	and	65	STR	
sites).		Line	frequency	noise	(60	Hz)	was	removed	from	the	signal	offline,	by	applying	a	10th‐order	
Butterworth	bandstop	filter	(59Hz	‐	61Hz)	at	both	forward	and	backward	time	directions.		To	
remove	any	stimulus‐evoked	potentials	added	on	top	of	the	ongoing	oscillations,	prior	to	wavelet	
transform,	all	time‐aligned	LFP	signals	were	mean	centered,	that	is,	the	cross‐trial	average	time‐
locked	LFP	signal	(separate	by	category	and	outcome)	was	subtracted	from	each	trial's	LFP.		All	
data	analyses	were	performed	on	MATLAB	(Mathworks,	Natick	MA),	and	statistical	tests	were	
corrected	for	multiple	comparisons.	

Spectral	decomposition	of	LFPs	relied	on	a	wavelet	transform	by	convolution	of	the	LFP	signal	with	
a	Morlet	wavelet	(Torrence	and	Compo,	1998),	at	5	octaves	from	2‐64	Hz,	at	a	frequency	resolution	
of	0.1	octave.		Wavelet	analyses	were	conducted	based	on	the	MATLAB‐based	software	Wavelet,	
offered	by	C.	Torrence	and	G.	Compo	at	the	URL:	http://atoc.colorado.edu/research/wavelets/.		
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After	wavelet	transform,	the	frequency‐specific	phase	of	each	wave	(inverse	tangent	of	real	and	
imaginary	components)	was	extracted	using	the	MATLAB	function	angle	and	the	amplitude	(from	
Pythagorean	equation	with	the	real	and	imaginary	components	as	x	and	y)	using	the	function	abs.		
Spectral	power	was	computed	as	the	squared	amplitude,	and	normalized	to	frequency‐1	to	correct	
for	the	power‐law	decay	and	enhance	visibility	of	the	higher	frequencies	(Siegel	et	al.,	2009).		
Synchrony	between	pairs	of	LFP	signals	was	evaluated	as	a	Phase‐Locking	Value	(PLV):	 	

	
1 	 	

which	is	the	length	of	the	vector	average	of	a	sample	(n)	of	phase‐differences	(φ1	‐	φ2).		The	phase	
(φ)	is	a	function	of	frequency	and	time.		Being	a	circular	mean,	PLV	=	1‐circular	variance.		As	such,	it	
varies	between	0	(maximum	variance),	when	all	phase‐differences	are	uniformly	distributed	over	
360o,	and	1	(minimum	variance),	when	all	phase‐differences	are	a	single	value.		PLV	quantifies,	
therefore,	how	consistent	the	phase‐difference	is	between	2	waves	over	a	set	of	observations.		
Averaging	of	phase‐differences	can	be	computed	over	a	time	segment,	over	a	sample	of	trials,	or	
across	several	pairs	of	electrodes.		Each	of	these	methods	has	been	used	in	the	past,	depending	on	
the	specific	question	of	interest	and	other	factors	(e.g.,	Lachaux	et	al.,	2000;	Wang	et	al.,	2006).		Our	
analyses	utilized	the	first	approach:	For	each	of	the	frequencies	of	interest,	the	momentary	(at	1‐ms	
resolution)	phase‐difference	was	averaged	over	a	500‐ms	long	time	window.		This	analysis	has	the	
advantages	of,	first,	utilizing	a	large	enough	sample	of	phase‐differences,	and	second,	preserving	the	
trial	resolution,	which	was	useful	for	further	computation	of	category	selectivity	(see	below).		The	
autoregressive	nature	of	the	LFP	can	bias	the	PLV:	Imagine	2	perfect	sinusoids	simultaneously	
recorded	over	a	period	of	time.		Regardless	of	the	size	of	their	phase‐difference,	this	difference	will	
be	constant	and	the	sinusoids	will	appear	perfectly	phase‐locked	(PLV=1).		In	reality,	because	of	
multiple	momentary	shifts	in	phase/amplitude,	LFPs	are	far	from	perfect	sinusoids	and	their	PLV	
never	reaches	its	maximum.		Still,	in	order	to	correct	PLV	for	this	bias,	the	trials	were	randomly	
shuffled	200	times	and	the	average	randomization	PLV	(i.e.,	the	PLV	expected	by	chance)	was	
computed.		The	observed	PLV	was	always	greater	than	the	randomization	PLV,	indicating	that	the	
bias	was	superimposed	on	the	true	synchrony	between	a	pair	of	LFP	signals.		All	PLVs	we	used	in	
our	analyses	were	bias‐corrected	by	subtracting	this	bias	from	the	observed	PLV.	

Synchrony	was	evaluated	from	simultaneously	recorded	pairs	of	electrodes	in	PFC	and	STR	(PFC‐
STR,	n=426),	within	PFC	(PFC‐PFC,	n=240)	or	within	STR	(STR‐STR,	n=141).		Other	than	PLV,	the	
results	were	similar	when	we	evaluated	synchrony	across	trials	using	the	standard	coherence	
measure	(e.g.,	Buschman	et	al.,	2012),	or	pairwise	phase	consistency	(Vinck	et	al.,	2010).		Synchrony	
between	proximal	sites	(i.e.,	within	PFC	or	STR)	may	also	be	vulnerable	to	electrotonic	volume	
conduction.		By	also	evaluating	synchrony	separately	for	proximal	vs.	distal	pairs	of	electrodes,	we	
confirmed	that	the	lack	of	learning‐induced	changes	in	PLV	within	PFC	and	STR	(Fig.3)	was	not	due	
to	masking	by	volume	conduction:	Neither	proximal,	not	distal	electrode	pairs	in	PFC	or	STR	
displayed	a	change	in	synchrony	across	learning	stages.		Finally,	because	of	the	multidimensionality	
of	a	dataset	like	the	one	in	this	study	(with	dimensions	like	time,	trials,	learning	stages,	spectral	
frequency,	area	of	recording,	etc.),	to	increase	the	statistical	power	and	computational	efficiency	of	
the	analyses,	it	was	necessary	to	only	focus	at	the	most	critical	dimensions.		However,	we	ensured	
that	the	dimensions	we	chose	to	collapse	(e.g.,	the	trial	dimension	by	averaging	the	first	16	correct	
trials	and	the	time	dimension	by	looking	at	2	critical	trial	epochs)	were	inconsequential	for	the	
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results	of	our	analyses.		The	results	were,	therefore,	similar	when	we	examined	different	trial	
epochs,	or	when	we	evaluated	the	evolution	of	synchrony	across	trials	within	a	learning	stage.	

Similar	to	the	LFP‐LFP	PLV	(above)	is	the	computation	of	the	spike‐LFP	PLV:		

	
1

	

except	that	n	is	now	a	sample	of	spike	timestamps,	and	φ	is	the	instantaneous	frequency‐specific	
phase	at	the	time	of	each	spike.		This	form	of	PLV	evaluates	how	consistently	spikes	are	fired	at	
specific	phase‐bins	of	each	frequency,	and	has	two	caveats:	First,	it	is	sensitive	to	the	number	of	
spikes,	and	second,	it	is	sensitive	to	the	temporal	profile	of	spiking	activity	(see	below).		To	partly	
address	the	former,	these	analyses	are	typically	performed	on	multiunit	activity	(MUA)	instead	of	
single‐unit	activity.		We	also	did	the	same:	we	pooled	all	previously	sorted	spikes	into	a	single	MUA	
signal	per	electrode	(Antzoulatos	and	Miller,	2011).		Not	only	did	this	increase	the	size	of	spike	
samples,	but	also	ensured	that	each	electrode	provided	a	single	LFP	and	a	single	MUA	signal.		
Another	approach	that	is	sometimes	followed	to	address	this	sensitivity	on	spike	numbers	is	
stratification:	It	involves	keeping	the	minimum	number	of	spikes	from	all	trials,	and	discarding	the	
(randomly	chosen)	excess	spikes.		This	approach	was	not	straightforward	to	implement	in	our	
dataset,	because	the	number	of	spikes	was	considerably	fluctuating	in	the	course	of	learning.		
Additionally,	even	stratification	does	not	fully	address	the	second	caveat	of	spike‐LFP	PLV,	which	is	
the	dependence	on	the	temporal	profile	of	spikes:	Consider	a	burst	of	spikes	occurring	over	a	brief	
(say,	50‐ms)	time	window	after	a	visual	display.		Inevitably,	due	to	their	temporal	clustering,	these	
spikes	will	appear	phase‐locked	at	a	low	frequency	(because	at	low	frequencies	each	phase‐bin	
lasts	longer	than	at	high	frequencies).		Even	after	stratification	the	spikes	will	most	likely	remain	in	
that	brief	time	window,	thus	leading	to	spurious	PLV.		Therefore,	in	order	to	correct	for	these	biases	
of	the	MUA‐LFP	PLV,	we	randomly	shuffled	the	trials	200	times,	and	subtracted	the	average	
randomization	PLV,	as	we	did	for	LFP‐LFP	PLV	(above).		Although	this	analysis	did	not	yield	
evidence	of	general	spike‐LFP	synchrony,	evaluation	of	category	selectivity	(as	described	below)	
revealed	that	spike‐LFP	synchrony	was	actually	category‐specific	(see	Figs	5	and	S2).	

As	in	our	previous	report	of	category‐selective	spiking	activity	(Antzoulatos	and	Miller,	2011),	for	
category	selectivity	in	LFP‐LFP	and	MUA‐LFP	synchrony	(PLV)	we	used	the	discrimination	index	d'.		
This	index	is	calculated	as	the	absolute	difference	between	mean	synchrony	in	the	2	sets	of	trials	
(category	A	vs.	B),	normalized	to	their	pooled	standard	deviation	sp,	i.e.,	

|〈 〉 	 〈 〉|
	

where	

∗ 1 	 	 ∗ 1
	 	2

	

s2	being	the	variance	and	n	the	number	of	each	set	of	trials.		To	correct	for	biases	generated	by	the	
variable	number	of	trials	in	each	category,	any	given	set	of	trials	was	randomly	shuffled	between	
the	2	groups	200	times,	thus	creating	a	surrogate	dataset.		The	observed	d'	was	subsequently	
transformed	into	a	z	score	on	the	basis	of	the	surrogate	data	mean	and	variance.		Similarly,	we	
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expressed	the	difference	between	error	and	correct	trials	as	a	z‐transformed	d',	except	that	we	
computed	the	signed	(i.e.,	not	absolute)	difference	of	error‐correct	trial	mean	PLV	(Fig.4).	

Finally,	our	Granger	causality	analyses	(Fig.6)	relied	on	a	nonparametric	spectral	matrix	
factorization	algorithm	(Dhamala	et	al.,	2008a,	2008b),	which	can	be	found	in	the	MATLAB‐based	
software	Fieldtrip	(Oostenveld	et	al.,	2011).		Preliminary	analyses	with	parametric	Granger	
causality	tests	indicated	that	the	optimal	multivariate	autoregressive	(MVAR)	model	order	
(estimated	using	the	Bayesian	and	Akaike	criteria)	was	highly	variable.		However,	because	our	
finding	that	STR	exerts	stronger	net	influence	on	PFC	was	somewhat	surprising	(given	the	direct	
inputs	from	PFC	to	STR),	we	did	replicate	this	finding	using	the	parametric	Granger	test	(with	
MVAR	orders	from	5	to	100)	in	both	the	time	and	frequency	domains.		These	analyses	were	
performed	on	the	MATLAB‐based	software	GCCA	(Seth,	2010).		
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