SUPPLEMENTARY MATERIALS AND METHODS

Immunofluorescence.

Cells were fixed in cold 4% paraformaldehyde for 15 min, rinsed and stored at +4 °C prior to analysis. Primary antibody staining was performed for Nestin (mouse, 1:200, Millipore, Billerica, MA), Tuj-1 (mouse, 1:1000, Covance, Princeton, NJ) and Ki67 (mouse, 1:200, Dako, Glostrup, Denmark). After incubation, cells were washed and incubated with species-specific secondary antibodies conjugated to Alexa dyes (Invitrogen, Carlsbad, CA). Cells were counterstained with DAPI to measure total cell number. Staining was visualized by epifluorescence (Vico, Nikon, Melville, NY) or confocal epifluorescence microscopy (Ti-E-A1, Nikon, Melville, NY).

Luciferase reporter assays.

GBM cells were transfected using Effectene Reagent (Qiagen, Hilden, Germany). BAT-luciferase reporter construct (BAT-lux) consists of seven TCF/LEF-binding sites upstream of a 0.13-kb fragment containing the minimal promoter–TATA box of the gene *siamois* (1), driving the expression of the firefly luciferase reporter gene. The hypoxia luciferase reporter assay was performed by using an HRE-luciferase reporter construct (wHRE) consisting of a trimerized 24-mer containing 18 bp of sequence from the PGK promoter including the HRE (5'-tgtcacgtcctgcacgactctagt, HRE) and an 8 bp linker sequence followed by a 50 bp minimal tyrosine kinase promoter in a pGL2-firefly luciferase Basic Vector backbone (Promega, Madison, WI).

The Notch luciferase reporter assay was performed using a reporter plasmid (6x-RBP-Jk-luc) containing six copies of the CBF1 binding consensus sequence (5'-tgggaa, Notch consensus sequence) from the Hes1 promoter used to evaluate Notch-mediated transcription. In all cases, transfection with a Renilla luciferase vector was used in order to normalize luciferase detection (Promega, Madison, WI).

Twenty-four hours after transfection, a total medium change was carried out, and cells were treated with 30 ng/ml of soluble Wnt3a and maintained at $2\% O_2$ or acutely expose to $20\% O_2$. Where

indicated, GBM-derived cells were co-transfected with CA-β-catenin plasmid or pcDNA3.1:NICD. Cells were processed for analysis of BAT-lux, HRE- and Notch-luciferase activity as described in the kit (Dual-Luciferase Reporter Assay System, Promega, Madison, WI) using a plate-reading luminometer (Victor, Perkin Elmer, Waltham, MA). Values reported in the graphs are expressed in relative light units (RLU) and were normalized to the control group at 2% oxygen.

Western blot and densitometric analysis.

Total protein extracts were isolated in lysis buffer as described previously (2, 3). Equal amounts of protein (10-20 µg) were resolved using an SDS-PAGE gel (Criterion, Bio-Rad, Hercules, CA) and transferred to PVDF Hybond-p membrane (GE Healthcare, London, Canada). Membranes were blocked with I-blockTM Blocking (Tropix, Sigma-Aldrich, St. Louis, MO) for at least 1 hour or overnight, under rotation at RT or 4 °C. Membranes were then incubated overnight at 4 °C under constant shaking for NUMB PAN-ISO (rabbit, 1:500, Upstate biothecnology, Lake Placid, NY), NUMB-L (rabbit, 1:1000, Novus Biologicals, Littleton, CO), Notch1 (rabbit, 1:1000, Cell Signalling Technologies Inc., Beverly, MA), Dll4 (rabbit, 1:500, Abcam, Cambridge, UK), Hes1 (rabbit, 1:250, Chemicon, Billerica, MA), phospho-β-catenin (Ser33/37/Th41; rabbit, 1:1000, Cell Signalling Technologies Inc., Beverly, MA); total β-catenin (rabbit, 1:5000, Abcam, Cambridge, UK), phospho-GSK3α/β (Ser21/9, rabbit, 1:1000, Cell Signalling Technologies Inc., Beverly, MA), p21^{cip1} (mouse, 1:1000, Sigma-Aldrich, St. Louis, MO), TCF-1 (rabbit, 1:100, Cell Signalling Technologies Inc., Beverly, MA), TCF-4 (rabbit, 1:1000, Cell Signalling Technologies Inc., Beverly, MA) and β-actin (mouse, 1:10000, Sigma-Aldrich, St. Louis, MO) as loading control. Membranes were next incubated with peroxidase-labelled goat anti-rabbit or anti-mouse IgG (1:100.000; Sigma-Aldrich, St. Louis, MO) for 60 min. All membranes were visualized using ECL Advance (GE Healthcare, London, Canada) and exposed to Hyperfilm MP (GE Healthcare, London, Canada). Densitometric analysis of the films was performed using Image J software.

Real-Time PCR analysis.

RNA was isolated from GBM cells or zebrafish larval brains using Trizol (Invitrogen, Carlsbad, CA) and 0.5 µg of total RNA reverse-transcribed using SuperScriptRNAse H-Reverse Transcriptase (Invitrogen, Carlsbad, CA). Quantitative RT-PCR reactions were run in triplicate using a Brilliant® SYBR® Green QPCR Core Reagent Kit (Stratagene, La Jolla, CA). Fluorescent emission was recorded in real-time (Sequence Detection System 7900HT, Applied Biosystems, Carlsbad, CA). Gene expression analysis was completed using the comparative Ct method of relative quantification. PCR amplification conditions consisted of 40 cycles with primers annealing at 60 °C. Sequences of specific primers used in this work are listed in Supplementary Table S3.

Primers were designed using the software Primer 3 (<u>http://frodo.wi.mit.edu/primer3/input.htm</u>), and the specificity of the primers for the human sequences was evaluated using the software Human BLAT Search (<u>http://genome.ucsc.edu/cgi-bin/hgBlat?command=start</u>). PCR amplicons had been previously evaluated on agarose gel (see Suppl. Table S3), and during SYBR green analyses, primer dissociation curves were checked in each run to ensure primer specificity to human mRNA. Relative RNA quantities were normalized to *GUSB*, and human GBM cells prior to injection were used as the calibrating condition ($\Delta\Delta$ Ct Method).

Transduction of GBM derived cells using lentiviral vectors.

The lentiviral plasmids containing HIF-1 α siRNA and Luciferase (Luc) siRNA target sequences, termed pLSLG-HIF-1 α -siRNA and pLSLG-Luciferase-siRNA, respectively, were a kind gift of Dr. O.V. Razorenova (Department of Molecular Cardiology, Lerner Research Institute, Cleveland, OH). The lentiviral vectors were produced as previously described (2) and used to infect GBM cells. Efficiency of transduction was evaluated by flow-cytometry (FC500 Beckman Coulter, Brea, CA).

Labelling of human cells with vital dye.

Cell pellets were resuspended at a density of 1×10^6 cells/ml in serum-free DMEM/F12 (Irvine Scientific, Irvine, CA); then the cell-labelling solution (Vibrant-DiI or Vibrant-DiO; Invitrogen, Carlsbad, CA) was added for a final concentration of 5 μ M. Cells were gently mixed and incubated for 20 minutes at 37 °C in the dark. The labelled suspension tubes were centrifuged at 1150 rpm for 7 minutes. The supernatant was removed, and the pellet was gently resuspended in warm (37 °C) serum-free medium. The wash procedure was repeated two more times. Finally, cells were resuspended in complete medium at a final concentration of 10^7 cells/ml.

Live Imaging of zebrafish embryos/larvae.

Xeno-transplanted zebrafish live larvae and reporter zebrafish were anaesthetized with Tricaine (0.5 mM 3-aminobenzoic acid ethyl ester; Sigma-Aldrich, St. Louis, MO) and then embedded in 1% low melting agarose in methylene blue free fishwater, with Tricaine added. Images and stacks were acquired using a Biorad confocal microscope, and images or 3D reconstruction were processed for figures and videos using ImageJ software (Research Services Branch, National Institute of Mental Health, Bethesda, Maryland, USA.).

Zebrafish immunofluorescence and in situ hybridization.

Xeno-transplanted zebrafish larvae were fixed in 4% paraformaldehyde, paraffin-embedded and cut in 5 µm-thick sections. Sections were re-hydrated, and then antigen retrieval was performed by incubation in citrate buffer 0.01 M, pH6, at 95 °C for 20 min. After saturation with 5% BSA, slides were incubated with anti-Nestin (mouse, 1:100, Chemicon, Billerica, MA), anti-Tuj-1 (mouse, 1:500, Covance, Princeton, NJ), anti-MAP2 (mouse, 1:100, Sigma-Aldrich, St. Louis, MO) and anti-Ki67 (mouse, 1:200, Dako, Glostrup, Denmark). After incubation, sections were washed and incubated with species-specific secondary antibodies conjugated to Alexa dyes (1:1000, Invitrogen, Carlsbad, CA). The specificity of each staining procedure was confirmed by replacing the primary antibodies with the specific isotype control. Tissues were counterstained with DAPI (1:10000, Sigma-Aldrich, St. Louis, MO) to evidence cell nuclei and zebrafish morphology. Staining was visualized by epifluorescence (Vico, Nikon, Melville, NY), and images processed for figures using Adobe Photoshop or Illustrator (Adobe, San Jose, CA). In situ hybridization was performed as described (4).

Statistical analysis

Graphs and statistical analyses were prepared using Prism 4.00 (Graph Pad, La Jolla, CA). All values are presented as mean \pm standard error of the mean (S.E.M.). Statistical significance was measured by one-way ANOVA with Newman-Keuls multiple comparison post Test, *p<0.05, **p<0.01, ***p<0.001.

References

- Maretto S, Cordenonsi M, Dupont S, Braghetta P, Broccoli V, Hassan AB, *et al.* Mapping Wnt/beta-catenin signaling during mouse development and in colorectal tumors. *Proc Natl Acad Sci U S A* 2003 Mar 18; 100(6): 3299-3304.
- Pistollato F, Chen HL, Rood BR, Zhang HZ, D'Avella D, Denaro L, *et al.* Hypoxia and HIF1alpha repress the differentiative effects of BMPs in high-grade glioma. *Stem Cells* 2009 Jan; 27(1): 7-17.
- Pistollato F, Rampazzo E, Abbadi S, Della Puppa A, Scienza R, D'Avella D, *et al.* Molecular mechanisms of HIF-1alpha modulation induced by oxygen tension and BMP2 in glioblastoma derived cells. *PLoS One* 2009; 4(7): e6206.
- Moro E, Ozhan-Kizil G, Mongera A, Beis D, Wierzbicki C, Young RM, *et al.* In vivo Wnt signaling tracing through a transgenic biosensor fish reveals novel activity domains. *Dev Biol* 2012 Jun 15; 366(2): 327-340.

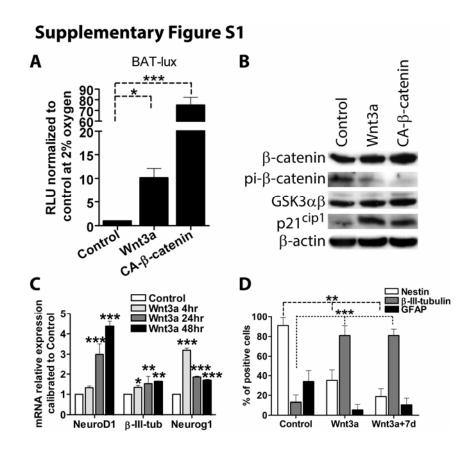
Supplemental Table S1				
GBM Tumors used in study				
Code	Classification	Age (y)	Gender	
HuTu01	Glioblastoma	65	male	
HuTu10	Glioblastoma	75	female	
HuTu13	Glioblastoma	67	male	
HuTu15	Glioblastoma	76	female	
HuTu47	Glioblastoma	80	female	
HuTu53	Glioblastoma	70	male	
HuTu63	Glioblastoma	37	female	
HuTu83	Glioblastoma	55	male	
HuTu102	Glioblastoma	40	male	
HuTu107	Glioblastoma	65	male	
HuTu155	Glioblastoma	48	female	

SUPPLEMENTARY TABLES S1-3

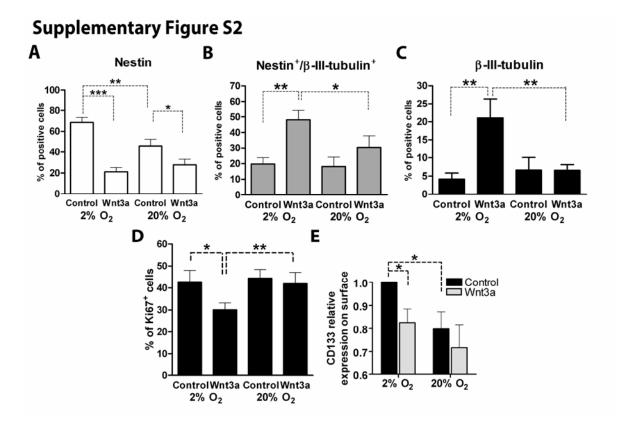
Supplementary Table S2			
Down-regulated	probe sets along the 3 time points in the intersection list		
Probe sets	Gene Symbol		
1556499 s at	COLIA1		
200077 s at	OAZ1		
200599 s at	HSP90B1		
200650 s at	LDHA		
200738 s at	PGK1		
200771 at	LAMC1		
200773 x at	LOC643287 /// PTMA		
200807 s at	HSPD1		
200832 s at	SCD		
200858 s at	RPS8		
200886 s at	hCG_2015138 /// PGAM1		
200958 s at	SDCBP		
200966 x at	ALDOA		
200900 <u>x</u> _at	CD9		
201105_at	LGALSI		
201426 s at	VIM		
201464 x at	JUN		
201645 at	TNC		
201667 at	GJA1		
201669 s at	MARCKS		
201849 at	BNIP3		
201019_at 201938_at	CDK2AP1		
201990_at 202403_s_at	COLIA2		
202405 <u>s</u> at	COLIA2		
202404_ <u>s_</u> at	DBI		
202428_x_at 204170 s at	CKS2		
204170 <u>s</u> _at	PTPRZ1		
204409_at 204471 at	GAP43		
205029 s at	FABP7		
205029_s_at 205030 at	FABP7 FABP7		
205050_at 205292 s at	HNRNPA2B1		
208628 s at	YBX1		
208628_s_at 208636 at	ACTNI		
208050_at 208752_x_at	NAPILI		
208732_x_at 208892 s at	DUSP6		
208892_s_at 208894_at	HLA-DRA		
208894_at 209189 at	FOS		
209189_at 209389 x at	DBI		
209389_x_at 209465 x at	PTN		
209465_x_at 209466 x at	PTN PTN		
209400_x_at 209656 s at	TMEM47		
$209030 s_at$ 210139 s at	PMP22		
210139_s_at 210512 s at			
	VEGFA WSP1		
210561_s_at	WSB1		
211070_x_at	DBI		
211737_x_at	PTN TPT1		
211943_x_at	TPT1		

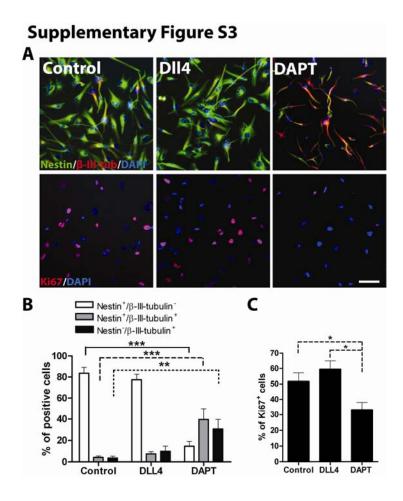
211945_s_at	ITGB1
211959_at	IGFBP5
211990_at	HLA-DPA1
212284_x_at	TPT1
213011_s_at	TPI1
213084_x_at	hCG_16001 /// hCG_2001000 /// RPL23A
213428_s_at	COL6A1
213881_x_at	SUMO2
213911_s_at	H2AFZ
217398_x_at	GAPDH
217757_at	A2M
217871_s_at	MIF
221479_s_at	BNIP3L
221841_s_at	KLF4
224606_at	KLF6
225413_at	USMG5
225540_at	MAP2
226189_at	ITGB8
37892_at	COL11A1

Probe sets with down regulation at 24 hpi time point and upregulation at 48 hpi time point

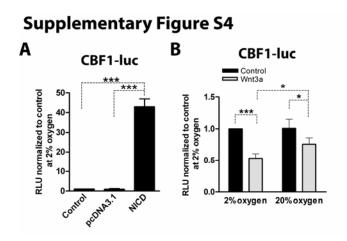

Probe sets	Gene Symbol
200665_s_at	SPARC
201550_x_at	ACTG1
201876_at	PON2
207030_s_at	CSRP2
210198_s_at	PLP1
210968_s_at	RTN4
211719_x_at	FN1
214629_x_at	RTN4
221607_x_at	ACTG1
224585_x_at	ACTG1
200638_s_at	YWHAZ
208640_at	RAC1
210211_s_at	HSP90AA1

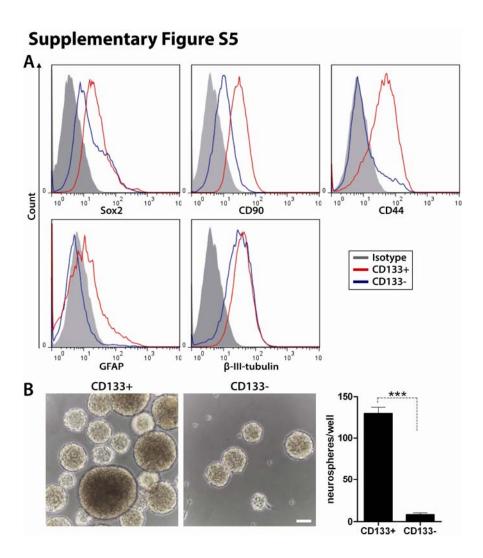
Up-regulated probe sets along the 3 time points in the intersection list

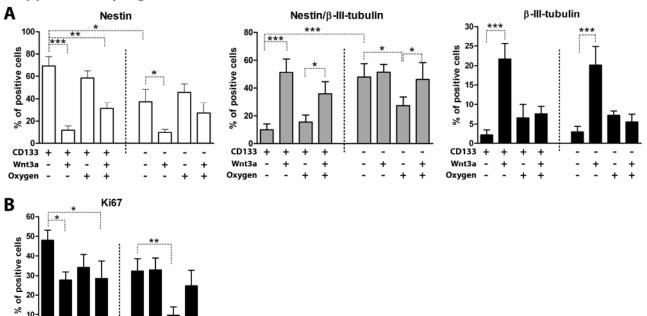

<i>Probe sets</i>	Gene symbol
209167_at	GPM6B
209170_s_at	GPM6B
209283_at	CRYAB
212097_at	CAV1
214247_s_at	DKK3
219087_at	ASPN

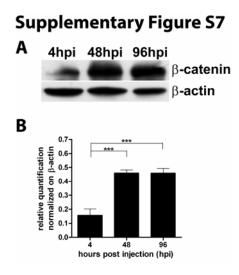

Supplementary Table S3				
Sequence of primers used in	this study			
Gene	Sequence (5'-3')	Amplicon (bp)		
MAP2 forward	GGGTCACAGGGCACCTATTC	129		
MAP2 reverse	GCTACAGCCTCAGCAGTGAC			
β-III-tubulin (Tuj1) forward	GGGGCCTTTGGACATCTCTT	126		
β-III-tubulin (Tuj1) reverse	CACCACATCCAGGACCGAAT			
Neuro D1 forward	CAGACGAGTGTCTCAGTTCTCA	139		
Neuro D1 reverse	TCCTCTTCCAGGTCCTCATCTT			
Neurogenin 1 forward	CCCCTAGTCAGCAGGCAATA	72		
Neurogenin 1 reverse	GGTCAGTTCTGAGCCAGTC			
LDHA forward	GGCCTGTGCCATCAGTATCT	177		
LDHA reverse	ACCAGCTTGGAGTTTGCAGT	177		
VEGF forward	AACCATGAACTTTCTGCTGTCT	129		
VEGF reverse	TTCACCACTTCGTGATGATTCT	12)		
DKK3 forward	GCCTGGTGTATGTGTGCAAG	91		
DKK3 reverse	TCATACTCATCGGGGGACCTC	91		
GPM6B forward	GCTGGGTGTGTTTGGTTTCT	84		
GPM6B reverse	TGCGGTGACTTGATGACTTC	04		
JUN forward	CCAAGAACTCGGACCTCCT	96		
JUN reverse	CCCGTTGCTGGACTGGATTA	90		
KLF4 forward	CTGCGGCAAAACCTACACAA	90		
KLF4 reverse	CGTCCCAGTCACAGTGGTA			
Numb forward	GTCGCTGGATCTGTCACTGCT	102		
Numb reverse	TCTGCTTGCGCTCTAAACAGG			
NumbLike forward	CCTTTCAAACGGCAGCTGAG	102		
NumbLike reverse	AGGCTCCATCTCAGGCACTG			
Numb-1180_forward	GCTAGTAGGGCTATTTAAGAACTGC			
Numb-1180_reverse	GCCCGGCCAGCAACTTTCTAATA	136		
Numb-418_forward	GCAGGAAGTGAGCTGGAGAAG	118		
Numb-418_reverse	GCGCAGTAGAAAGCAAAGGAG			
TCF-1 forward	CCTAGCAAGGAGGAGCGAGA	143		
TCF-1 reverse	CCGGTTGGCAAACCAGTTGTAG			
TCF-3 forward	AAGAAGCCCCACGTGAAGAAG	133		
TCF-3 reverse	GGTTGTGCCACTTTCTTCCAAGGA			
TCF-4 forward	TTTAAGGGGCCACCGTATCC			
TCF-4 reverse	TGCCGGACTGAAAATGGAG	119		
LEF-1 forward	TCTCAGGAGCCCTACCACGA	94		
LEF-1 reverse	CGAGTAGGAGGGTCCCTTGTT			
β-glucuronidase (GUSB) forward	GAAAATACGTGGTTGGAGAGCTCATT	101		
β-glucuronidase (GUSB) reverse	CCGAGTGAAGATCCCCTTTTTA			

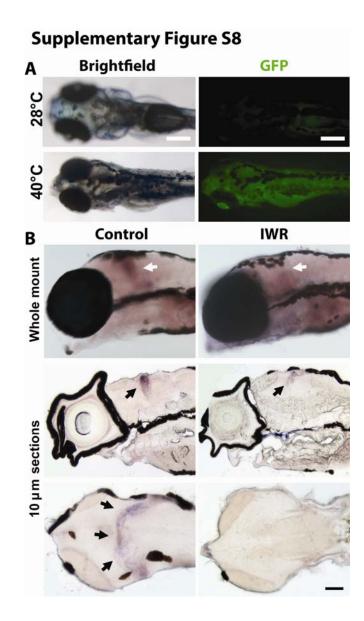
SUPPLEMENTARY FIGURES S1-10




10

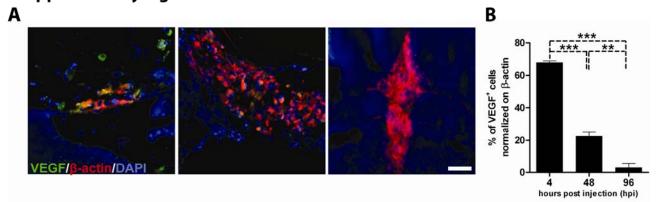



Supplementary Figure S6


0 CD133 + Wnt3a -Oxygen -

+ + + + - + - + +

- - - -- + - + - - + +



Supplementary Figure S9

Supplementary Figure S10

SUPPLEMENTARY FIGURE LEGENDS

Supplementary Figure S1. Canonical Wnt3a induces neuronal differentiation of GBM derived cells. (A) BAT-lux reporter analysis of Wnt3a-treated or CA- β -catenin-transfected cells at 2% O₂. Mean of 3 tumours ± S.E.M., n=2 for each tumour. (B) WB representing the activation status of β -catenin, its regulator GSK3 $\alpha\beta$ and the differentiation /proliferation marker p21^{cip1} of GBM cells treated with Wnt3a or transfected with CA- β -catenin plasmid. Analysis repeated on additional 3 tumours. (C) RQ-PCR analysis showing mRNA levels of NeuroD1, β -III-tubulin and Neurog1. Mean of 6 different tumours, n=4 for each tumour. (D) Bar graph reporting relative quantification of immunofluorescence images of GBM cells treated with Wnt3a or after Wnt3a withdrawal and stained for Nestin (green)/ β -III-tubulin (red). Mean of 3 tumours ± S.E.M. n=2 for each tumour. *p<0.05, **p<0.01, ***p<0.001.

Supplementary Figure S2. Hypoxia modulates Wnt signalling activation in GBM-derived cells. (A-D) Bar graphs reporting relative quantification of Nestin⁺/ β -III-tubulin⁻, Nestin⁺/ β -III-tubulin⁺ and Nestin⁻/ β -III-tubulin⁺ sub-populations of Wnt3a-treated GBM cells at different oxygen tensions. (E) Analysis of CD133 cell surface marker expression after Wnt3a treatment of 2% or 20% O₂ cultured cells. Mean of 5 tumours \pm S.E.M., n=2 for each tumour. *p<0.05, **p<0.01, ***p<0.001.

Supplementary Figure S3. Notch signalling inhibition promotes neuronal differentiation of GBM-derived cells. (A) Representative immunofluorescence images of GBM cells treated with Dll4 or DAPT for 96h and stained for Nestin (green)/ β -III-tubulin (red) and Ki67 (red). Bar=100 μ m. (B-C) Bar graph reporting relative quantification of images described in panel (A). Mean of 3 tumours ± S.E.M. n=3 for each tumour. *p<0.05, **p<0.01, ***p<0.001.

Supplementary Figure S4. CBF1-luc analysis on GBM-derived cells. (A) CBF1-luc luciferase assay on NICD transfected or control cells. (B) CBF1-luc luciferase assay conducted on Wnt3a-treated GBM cells at different oxygen tensions. For all graphs, mean of 3 tumours \pm S.E.M., n=2 for each tumour. *p<0.05, **p<0.01, ***p<0.001.

Supplementary Figure S5. Low oxygen tension enhances Wnt-dependent differentiation only in CD133⁺ GBM-derived cells. (A) Bar graphs reporting relative quantification of Nestin⁺/ β -IIItubulin⁻, Nestin⁺/ β -III-tubulin⁺ and Nestin⁻/ β -III-tubulin⁺ sub-populations of CD133⁺ and CD133⁻ sorted cells treated or not treated with Wnt3a at different oxygen tensions. (B) Bar graph showing % of Ki67⁺ cells treated as in panel (A). For all graphs, mean of 3 tumours \pm S.E.M., n=10 for each tumour. *p<0.05, **p<0.01, ***p<0.001.

Supplementary Figure S6. Phenotypic and functional characterization of CD133⁺ GBM derived cells. (A) Cytofluorimetric analyses of stemness (Sox2, CD90, and CD44) and differentiation (GFAP and β -III-tubulin) markers expression in CD133⁺ (red line) and CD133⁻ (blue line) GBM cells. (B) Representative images showing neurospheres generated from CD133⁺ and CD133⁻ sorted GBM cells plated in non-coated dishes at a concentration of 1000 cells/P12 well and relative quantification. Bar=200µm. ***p<0.001.

Supplementary Figure S7. Wnt pathway is activated in GBM cells *in vivo*. (A) Representative western blot analyses of human β -catenin in total protein extracts retrieved from zebrafish brains transplanted with GBM cells after 4, 48 and 96hpi along with human β -actin as loading control. (B) Bar graph reporting relative β -catenin protein quantification normalized to human β -actin. The analysis has been confirmed on additional 3 tumours. For the graph, mean of 4 tumours ± S.E.M., n=3 for each tumour. *p<0.05, **p<0.01, ***p<0.001.

Supplementary Figure S8. GFP expression after *hsp70l:dkk1-GFP* larvae heat-shock and Neurod expression in IWR-treated zebrafish larvae. (A) Representative images of *hsp70l:dkk1-GFP* larvae maintained at 28°C (upper panels) and after heat shock (40 °C) (lower panels). Left panels: live larvae; right panel: transgene expression after heat shock. bar=100µm. (B) Representative images of *neurod* expression by whole mount in situ hybridization on control and IWR-treated (72h) zebrafish larvae at 9dpf. Arrows indicate sites of *neurod* expression. Larvae were OCT-embedded and sectioned post–staining. The analysis has been confirmed in 3 independent experiments on 150 larvae. Bar=100µm.

Supplementary Figure S9. Wnt pathway suppression blocks transplanted GBM cell differentiation. (A,C) Representative immunofluorescence images of IWR-treated xeno-transplanted larvae stained for Nestin (green)/ β -III-tubulin (red) (A) and Ki67 (green)/ β -actin (red) (C). (B,D) Relative quantification of images described in (A,C).

Supplementary Figure S10. Validation of GEP data. (A-B) Representative immunofluorescence images of paraffin-embedded tissue sections of xeno-transplanted zebrafish larvae at 4, 48 and 96hpi stained for VEGF (green)/ β -actin (red) (A) and bar graphs reporting relative quantifications (B). Bar=40µm. Mean of 3 tumours ± S.E.M., n=4 for each tumour.