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(e1489), (4) ego-1(om84)/�; sDp3; dpy-17 sDf134 unc-32. The
ccIs4251 unc-15 chromosome was used to balance ego-1. The inte-Mutant Strains

Standard culture conditions were used [S1]. Wild-type strain grated transgene, ccIs4251, carries nuclear targeted GFP under
control of the myo-3 promoter, and therefore expresses GFP inC. elegans variant Bristol (N2) and mutations used are as described

by Chen et al. [S2], as listed in Wormbase (http://www.wormbase.org), muscle cell nuclei [S7]. The following transgenic strains were used.
(1) Strain PD7291 contains ccEx7291, an extrachromosomal repeti-or as indicated in the text. Mutations used were: LG (linkage group)

I: ego-1(om54, om71, om84, and om97), drsh-1(rm654), rde-2 tive array composed of plasmids pBK48 (let-858::gfp) and pRF4
[rol-6(gf)]. (2) Strain JH227 contains an integrated, complex array(ne221), rrf-1(pk1417), rrf-2(ok210), unc-15(e73), ccIs4251; LGII: rrf-3

(pk1426); LGIII: dcr-1(ok247), rde-4(ne301), unc-32(e189), sDp3(III:f), composed of pRF4, a plasmid carrying pie-1::gfp, and high se-
quence complexity DNA (kindly provided by G. Seydoux). (3) StrainsvDp1(III;f), sDf134, unc-32(e189); LGIV: him-8(e1489); LGV: rde-

1(ne219), him-17(ok434). The following mutations are known to be BW2063 contains the chromosomal fragment, svDp1, which was
made by fusing sDp3 with a repetitive array that contains the sur-null: ego-1(om84 and om97) [S3], dcr-1(ok247), him-17(ok434) [S4],

and drsh-1(tm654) [S5]. The ego-1(om84) strain was used as the 5::gfp marker gene [S8].
canonical null allele in our indirect immunofluorescence and genetic
studies. Both ego-1(om54) and ego-1(om71) contain single amino Indirect Immunofluorescence

Experiments were performed using published methods [S9, S10]acid substitutions at conserved residues in the RdRP domain [S6].
The full genotypes of double mutant strains are as follows: (1) ego- and/or the following protocol, which gave similar results. Tissue was

dissected and treated in deep well slides, and then mounted onto1(om84)/ccIs4251 unc-15; him-17(ok434), (2) ego-1(om84)/ccIs4251

Figure S1. Elevated H3K9me2 in rrf-3 Mutant Germlines

Each panel shows a portion of the male meiotic germline stained with polyclonal antibody against H3K9me2 and with DAPI to visualize DNA.
Null alleles of ego-1 and rrf-3 were used; rrf-3 animals were raised at 25�C (see text and Supplemental Experimental Procedures). Photographs
are oriented with distal tissue to the left.
(A) In the wild-type (wt) germline, H3K9me2 staining rapidly decreases as germ cells become primary spermatocytes (bar).
(B) In the rrf-3 germline, full H3K9me2 staining is retained in primary spermatocytes. The H3K9me2 level is very reduced in mature sperm
(sp).
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Figure S2. H3K9me2 Is Targeted Normally in the rde-2 Mutant Germline

(A and B) A portion of the meiotic germline stained with DAPI to visualize DNA and polyclonal anti-H3K9me2 antibody.
(A) A bright focus of H3K9me2 staining is visible in rde-2 male germ cells, presumably corresponding to the X chromosome.
(B) A bright focus of H3K9me2 staining is visible in rde-2;ex7291 hermaphrodite germ cells, presumably corresponding to the ex7291 extrachro-
mosomal array.
(C) GFP is visible in germ cell nuclei, reflecting expression of the let-858::gfp reporter gene that is present on the array. Germline tissue is
outlined in white and flanks intestinal tissue (with large, brightly staining nuclei). Scale bar equals 10 �m.

a flat slide for viewing. Washed animals were dissected in 1� on the method of Pazin [S11] with some modifications. A 100 �l
volume of packed wild-type (N2) worms was used. Worms werePBS/1 mM levamisole to faciliate extrusion of gonads. Dissected

gonads were fixed for 5 min in 2.5% paraformaldehyde/1� PBS and washed in M9 medium, pelleted, and resuspended in 300 �l of
homogenization buffer (HB; 1.5 ml 5 M HEPES [pH 7.6], 200 �l 2.5washed in 1� PBS/0.1%Tween-20 (PBST). Tissue was blocked for

at least 1 hr in a solution containing 1� PBS, 0.5% Tween-20, and M KCl, 250 �l 1 M MgCl2, 10 ml 60% sucrose, 10 �l 0.5 M EDTA,
38 ml ddH2O). 100 �l of glass beads were added, and tissue was30% goat serum (PBST/GS) and then incubated overnight at 15�C

with primary antibody in fresh PBST/GS. Tissue was washed 3� in disrupted by a 25 s treatment at speed 5.5 on a Thermo Savant
FP120 Fast Prep. Microscopy was used to confirm that animalsPBST, incubated with anti-rabbit secondary antibody (1/150 dilution;

Pierce), and washed 3� in PBS. DAPI was added to the penultimate were disrupted and tissue was spun at 9000 rpm for 2 min to pellet
membranes. The supernatant was removed to a clean tube, 0.5 �lwash to visualize DNA.
NP-40 was added to a final concentration of 0.2%, and material
was spun at 8000 rpm for 2 min at room temperature (RT). The pelletProtein Analysis

Total protein extracts were prepared and EGO-1 protein blotting was resuspended in 500 �l HB. Cells were disrupted by grinding in
a dounce homogenizer and repeated pipeting. Material was spunwas done as described [S3]. Nuclear extract was prepared based
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Figure S3. EGO-1 Is Present in Nuclear Extracts silencing in the germline of C. elegans. Development 129,
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The development of myofibrils in cultured muscle cells: aat 8000 rpm for 2 min at RT, and the nuclear pellet was resuspended
whole-mount and thin-section electron microscopic study.in 100 �l HEMK buffer (2.5 ml 5 M HEPES [pH 7.6], 4 ml 2.5 M KCl,
Dev. Biol. 88, 121–136.625 �l 1 M MgCl2, 10 �l 0.5 M EDTA, 5 ml glycerol, 50 �l NP-40 in

50 ml final volume; protease inhibitors were added immediately
before use, to 5 ml of this solution as follows: 5 �l 1 M DTT, 5 �l
aprotinin, 0.5 �l pefabloc SC). Material was sonicated to disrupt
nuclei, and then spun at 14,000 rpm for 8 min at 4�C. Supernatant
was removed, and an equal volume of 2� SDS buffer was added.
Material was boiled 3 min and cooled prior to loading on a polyacryl-
amide gel. 15 �l of the preparation, 10% of the total extract, was
added per lane. Whole protein and nuclear extracts were run in
parallel. Equivalent blots were incubated with anti-EGO-1 [S3], anti-
lamin [S12], or anti-myosin [S13]. Anti-lamin was used to assay the
efficiency of recovery of nuclei in the nuclear preparation. Anti-
myosin was used to assay for contamination of the nuclear prepara-
tion by cytoplasmic protein. Band intensity was quantified using
Kodak Gel Documentation software, and data were normalized to
determine the relative proportion of nuclear versus total EGO-1 pro-
tein based on recovery of lamin in nuclear versus total extracts and
(very low) contamination of nuclear extract with cytoplasmic protein.
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