A sodium-mediated structural switch that controls the sensitivity of Kir channels to

PIP₂.

Avia Rosenhouse-Dantsker¹, Jin L. Sui², Qi Zhao, Radda Rusinova, Aldo A. Rodríguez-Menchaca³, Zhe Zhang³, and Diomedes E. Logothetis^{3,*}

Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York 10029

1 **Current address:** Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, University of Illinois at Chicago, 840 South Wood Street (M/C 719), Room 920-N CSB, Chicago, IL 60612

2 Current address: CombinatoRx Inc., 245 First Street, Cambridge, MA 02142

3 **Current address:** Virginia Commonwealth University, Medical College of Virginia Campus, Department of Physiology and Biophysics, Sanger Hall 3-005, 1101 E. Marshall Street, Richmond, VA 23298

* To whom correspondence should be addressed: delogothetis@vcu.edu

Running title:

Sodium mediated structural switch

Supplemental Figure 1. H-bonding pattern between position 217 and residues in its vicinity in (a) Kir3.1 after minimization. The model was based on the crystallographic structure of Kir3.1 (PDB accession number 1N9P¹⁹). (b) 4.6Å displacement of a Na⁺ ion during minimization to its coordination site. (c) Summary of whole-cell basal current from Kir3.1* and Kir3.4*_N217D expressed in *Xenopus* oocytes and recorded at -80mV.
(d) Stereo view of the sodium coordination site in Kir3.1_N217D that shows a nearby water molecule. Figures (a), (b), and (d) were drawn using PyMol⁴⁸.

Supplemental Figure 2. Conformational transitions revealed through clustering analysis. (**a**) Classification of the structures obtained during the MD simulations of Kir3.4, Kir3.4_D223N, and Kir3.4_H228M according to clustering analysis. (**b**)-(**d**) Representative conformations of the backbone atoms of the critical loop of dominant clusters obtained from the simulation of Kir3.4, Kir3.4_D223N and Kir3.4_H228M portraying the relative orientations of the side-chains of positions 223 and 225. (**e**)-(**f**) Orientations of the side-chains of position 223, 225 and 228 in the representative conformations of the dominant clusters of Kir3.4 and in Kir3.4_H228M.

Supplemental Figure 3. Simulations in the presence of water. (a) Minimal distance between positions 223 and 225 as obtained from MD simulations of Kir3.4*, Kir3.4*_D223N, and Kir3.4*_H228M in the presence of the primary hydration shell (PHS - see methods). (b) RMSD of the backbone residues of the cytosolic domain relative to the starting minimized structure that corresponds to the MD simulations of Kir3.4, Kir3.4_D223N, and Kir3.4_H228M in the presence of the PHS. The calculations were performed using Simulaid:

http://atlas.physbio.mssm.edu/~mezei/simulaid/simulaid.html. (c) Representative structure of the critical loop in Kir3.4 surrounded by the PHS.

Supplemental Figure 4. Effects of mutations of Kir3.4* residues in the loop where Na⁺ is coordinated on Na⁺ and PIP₂ sensitivity (**a**) Na⁺ dose-response curve of Kir3.4* and Kir3.4*_H228M obtained in the presence of 3μ M PIP₂. (**b**) PIP₂ dose-response curves of Kir3.4*, Kir3.4*_D223N, Kir3.4*_H228M, and Kir3.4*I229L obtained using diC8 in the presence of 30μ M Na⁺.

Supplemental Figure 5. MD simulations monitoring distance of Na⁺-insensitive neighboring residues to Kir3.4*_R225. Minimal distance between positions 223 and 225 as obtained from MD simulations of Kir3.4, Kir3.4_N226K, and Kir3.4_I229L.

Supplemental Figure 6. Experimental evidence for Kir3.2 residues involved in Na⁺ sensitivity (**a**) Whole-cell basal currents of Kir3.1/Kir3.2, Kir3.1/Kir3.2_D226N, and Kir3.1/Kir3.2_H231M recorded in *Xenopus* oocytes at -80mV. (**b**)-(**d**) Representative traces of inside-out macropatch recordings of *Xenopus* oocytes. Na⁺ (30mM) and MgATP (5mM) were applied as indicated by the bars in the control solution (ND96K+EGTA with 2mM Mg⁺⁺) (**b**) Kir3.1/Kir3.2 (**c**) Kir3.1/Kir3.2_D226N (**d**) Kir3.1/Kir3.2_H231M. (**e**) Summary data showing the effect of perfusion of Na⁺ (30mM) on currents obtained from inside-out patches of *Xenopus* oocytes after a short application of MgATP (5mM).

Supplemental Figure 7. Experimental evidence of a role for His210 in Na⁺ sensitivity of Kir5.1. (a) The rundown of Kir4.1/Kir5.1_H210M is still slowed down following application of sodium. (b) The rundown of

Kir4.1/Kir5.1_F206L_P208K_N209S_H210M becomes Na⁺ insensitive.

Supplemental Table 1: Summary of the cluster analysis of the trajectories obtained from the molecular dynamics simulations of Kir3.4, Kir3.4_D223N, and Kir3.4_H228M according to the distances between the atoms in the side-chains of the residues at positions 223 and 225 that could form hydrogen bonding.

		Average distance (Å)									
Cluster	number	OD1(223)-	OD1(223)-	OD1(223)-	OD1(223)-	OD1(223)-	OD2(223)-	OD2(223)-	OD2(223)-	OD2(223)-	OD2(223)-
number	of	HH11(225)	HH12(225)	HH21(225)	HH22(225)	HE(225)	HH11(225)	HH12(225)	HH21(225)	HH22(225)	HE(225)
	members										
Kir3.4											
1	323	8.138	7.454	7.502	6.286	5.675	9.858	9.163	9.14	7.843	7.31
2	1	8.22	6.856	8.581	7.972	5.18	6.236	4.748	7.02	6.75	3.544
3	1476	5.466	3.74	7.006	7.034	3.666	3.574	1.78	4.934	4.958	1.688
Kir3.4_											
N216D											
1	991	8.186	6.663	9.757	9.699	6.548					
2	809	8.988	7.409	10.595	10.502	7.206					
Kir3.4_											
H228M											
1	266	8.729	8.033	7.991	6.704	6.125	10.722	10.097	9.816	8.46	8.18
2	342	10.671	10.153	9.585	7.963	8.106	8.834	8.328	7.786	6.17	6.297
3	1192	9.262	8.926	8.033	6.373	7.01	7.175	6.931	5.964	4.349	5.182